Previous in Relation and Functions Next in Relation and Functions | ||
Question Number 33940 by rahul 19 last updated on 28/Apr/18 | ||
$$\boldsymbol{{L}}{et}\:{a},{b}\:{are}\:{positive}\:{real}\:{numbers}\:{such} \\ $$ $${that}\:{a}−{b}=\mathrm{10}\:,\:{then}\:{the}\:{smallest}\:{value} \\ $$ $${of}\:{the}\:{constant}\:\boldsymbol{{k}}\:{for}\:{which}\: \\ $$ $$\sqrt{\left({x}^{\mathrm{2}} +{ax}\right)}\:−\:\sqrt{\left({x}^{\mathrm{2}} +{bx}\right)}\:<\:\boldsymbol{{k}}\:{for}\:{all}\:{x}>\mathrm{0}\: \\ $$ $${is}\:? \\ $$ | ||
Answered by MJS last updated on 28/Apr/18 | ||
$${a}={r}+\mathrm{5} \\ $$ $${b}={r}−\mathrm{5} \\ $$ $$\sqrt{{x}^{\mathrm{2}} +{rx}+\mathrm{5}{x}}−\sqrt{{x}^{\mathrm{2}} +{rx}−\mathrm{5}{x}}<{k} \\ $$ $$\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{show}\:\mathrm{that} \\ $$ $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt{{x}^{\mathrm{2}} +{rx}+\mathrm{5}{x}}−\sqrt{{x}^{\mathrm{2}} +{rx}−\mathrm{5}{x}}=\mathrm{5} \\ $$ $$\mathrm{sorry}\:\mathrm{I}\:\mathrm{have}\:\mathrm{no}\:\mathrm{time}\:\mathrm{right}\:\mathrm{now}... \\ $$ $$ \\ $$ $$ \\ $$ $$\sqrt{{x}^{\mathrm{2}} +{rx}+\mathrm{5}{x}}−\sqrt{{x}^{\mathrm{2}} +{rx}−\mathrm{5}{x}}={k}\:\:\:\:\:\left({I}.\right) \\ $$ $$\:\:\:\:\:\:\:\:\:\:\left[{x}={y}\:\Rightarrow\:\frac{\mathrm{1}}{{x}}=\frac{\mathrm{1}}{{y}}\right] \\ $$ $$\frac{\mathrm{1}}{\sqrt{{x}^{\mathrm{2}} +{rx}+\mathrm{5}{x}}−\sqrt{{x}^{\mathrm{2}} +{rx}−\mathrm{5}{x}}}=\frac{\mathrm{1}}{{k}} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\left[\frac{\mathrm{1}}{{u}−{v}}=\frac{{u}+{v}}{\left({u}−{v}\right)\left({u}+{v}\right)}=\frac{{u}+{v}}{{u}^{\mathrm{2}} −{v}^{\mathrm{2}} }\right] \\ $$ $$\frac{\sqrt{{x}^{\mathrm{2}} +{rx}+\mathrm{5}{x}}+\sqrt{{x}^{\mathrm{2}} +{rx}−\mathrm{5}{x}}}{{x}^{\mathrm{2}} +{rx}+\mathrm{5}{x}−\left({x}^{\mathrm{2}} +{rx}−\mathrm{5}{x}\right)}=\frac{\mathrm{1}}{{k}} \\ $$ $$\frac{\sqrt{{x}^{\mathrm{2}} +{rx}+\mathrm{5}{x}}+\sqrt{{x}^{\mathrm{2}} +{rx}−\mathrm{5}{x}}}{\mathrm{10}{x}}=\frac{\mathrm{1}}{{k}} \\ $$ $$\sqrt{{x}^{\mathrm{2}} +{rx}+\mathrm{5}{x}}+\sqrt{{x}^{\mathrm{2}} +{rx}−\mathrm{5}{x}}=\frac{\mathrm{10}{x}}{{k}}\:\:\:\:\:\left({II}.\right) \\ $$ $$\mathrm{2}\sqrt{{x}^{\mathrm{2}} +{rx}+\mathrm{5}{x}}={k}+\frac{\mathrm{10}{x}}{{k}}\:\:\:\:\:\left({I}.+{II}.\right) \\ $$ $$\mathrm{4}\left({x}^{\mathrm{2}} +{rx}+\mathrm{5}{x}\right)={k}^{\mathrm{2}} +\mathrm{20}{x}+\frac{\mathrm{100}{x}^{\mathrm{2}} }{{k}^{\mathrm{2}} } \\ $$ $$\left(\mathrm{4}−\frac{\mathrm{100}}{{k}^{\mathrm{2}} }\right){x}^{\mathrm{2}} +\mathrm{4}{rx}−{k}^{\mathrm{2}} =\mathrm{0} \\ $$ $${x}^{\mathrm{2}} +\frac{{k}^{\mathrm{2}} {r}}{{k}^{\mathrm{2}} −\mathrm{25}}{x}−\frac{{k}^{\mathrm{4}} }{\mathrm{4}\left({k}^{\mathrm{2}} −\mathrm{25}\right)}=\mathrm{0} \\ $$ $${x}=−\frac{{k}^{\mathrm{2}} {r}}{\mathrm{2}\left({k}^{\mathrm{2}} −\mathrm{25}\right)}\pm\frac{{k}^{\mathrm{2}} }{\mathrm{2}\left({k}^{\mathrm{2}} −\mathrm{25}\right)}\sqrt{{k}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{25}}= \\ $$ $$=\frac{{r}\pm\sqrt{{k}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{25}}}{\mathrm{2}\left({k}^{\mathrm{2}} −\mathrm{25}\right)}{k}^{\mathrm{2}} \\ $$ $$\frac{\mathrm{1}}{{x}}=\frac{\mathrm{2}\left({k}^{\mathrm{2}} −\mathrm{25}\right)}{{r}\pm\sqrt{{k}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{25}}}×\frac{\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$ $${x}\rightarrow\infty\:\Rightarrow\:{k}^{\mathrm{2}} −\mathrm{25}=\mathrm{0}\:\Rightarrow\:{k}=\pm\mathrm{5} \\ $$ $$\sqrt{{x}^{\mathrm{2}} +{rx}+\mathrm{5}{x}}−\sqrt{{x}^{\mathrm{2}} +{rx}−\mathrm{5}{x}}>\mathrm{0}\:\Rightarrow\:{k}=\mathrm{5} \\ $$ | ||
Commented byrahul 19 last updated on 28/Apr/18 | ||
$${No}\:\mathrm{problem}\:\mathrm{sir}.\: \\ $$ $$\mathrm{btw},\:{how}\:{you}\:{came}\:{to}\:{know}\:{it}\:{should} \\ $$ $${be}\:{equal}\:{to}\:\mathrm{5}? \\ $$ | ||
Commented byMJS last updated on 28/Apr/18 | ||
$$\mathrm{this}\:\mathrm{is}\:\mathrm{what}\:\mathrm{seems}\:\mathrm{obvious}\:\mathrm{to}\:\mathrm{me}: \\ $$ $$\sqrt{{x}\left({x}+{c}\right)}=\sqrt{\left({x}+\frac{{c}}{\mathrm{2}}\right)^{\mathrm{2}} −\frac{{c}^{\mathrm{2}} }{\mathrm{4}}}\underset{{x}\rightarrow\infty} {\approx}{x}+\frac{{c}}{\mathrm{2}} \\ $$ $$\sqrt{{x}\left({x}+{a}\right)}−\sqrt{{x}\left({x}+{b}\right)}\underset{{x}\rightarrow\infty} {\approx}{x}+\frac{{a}}{\mathrm{2}}−\left({x}+\frac{{b}}{\mathrm{2}}\right)=\frac{{a}−{b}}{\mathrm{2}}=\frac{{a}−\left({a}−\mathrm{10}\right)}{\mathrm{2}}=\mathrm{5} \\ $$ $$\mathrm{not}\:\mathrm{sure}\:\mathrm{if}\:\mathrm{this}\:\mathrm{counts}\:\mathrm{as}\:\mathrm{proof}... \\ $$ | ||
Commented byrahul 19 last updated on 28/Apr/18 | ||
$$\mathscr{T}{hank}\:\mathrm{you}\:\mathrm{sir}\:. \\ $$ | ||
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Apr/18 | ||
$$\sqrt{\left({x}^{\mathrm{2}} +{ax}\right)}\:\:−\sqrt{\left({x}^{\mathrm{2}} +{bx}\right)}\:<{k} \\ $$ $${x}\left({a}−{b}\right)/\sqrt{\left({x}_{} ^{\mathrm{2}} +{ax}\right)}\:+\sqrt{\left({x}^{\mathrm{2}} +{bx}\right)}\:\:<{k} \\ $$ $$\left({a}−{b}\right)/\sqrt{\left(\mathrm{1}+{a}/{x}\right)}\:\:+\sqrt{\left(\mathrm{1}+{b}/{x}\right)}\:<{k} \\ $$ $$\mathrm{10}/\sqrt{\left(\mathrm{1}+{a}/{x}\right)\:}\:+\sqrt{\left(\mathrm{1}+{b}/{x}\right)}\:\:<{k} \\ $$ $${for}\:{smallest}\:{value}\:{of}\:{k}\:{the}\:{denominator}\:{shoul}\:{be}\: \\ $$ $$\:\:\:\:\:{be}\:{maximum}\:{value} \\ $$ $${maximum}\:{value}\:\sqrt{\left(\mathrm{1}+{a}/{x}\right)}\:+\sqrt{\left(\mathrm{1}+{b}/{x}\right)} \\ $$ $${pls}\:{check}\:{the}\:{question} \\ $$ | ||
Commented byrahul 19 last updated on 28/Apr/18 | ||
$${Wow}!\:{nice}\:{solution}\:{sir}! \\ $$ | ||
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Apr/18 | ||
$${f}\:{x}\rightarrow\infty\:{the}\:{value}\:{of}\sqrt{\left(\mathrm{1}+{a}/{x}\right)\:}\:+\sqrt{\left(\mathrm{1}+{b}/{x}\right)} \\ $$ $${is}\:\mathrm{2}\:{so}\:{the}\:{value}\:{of}\:{k}\:{is}\:\mathrm{10}/\mathrm{2}=\mathrm{5} \\ $$ | ||
Commented byrahul 19 last updated on 29/Apr/18 | ||
$$\:{doubt}\:: \\ $$ $${we}\:{need}\:{to}\:{find}\:{max}.\:{value}\:{of} \\ $$ $$\sqrt{\mathrm{1}+\frac{{a}}{{x}}}\:+\:\sqrt{\mathrm{1}+\frac{{b}}{{x}}}\:\rightarrow\:{min}.\:{value}\:{of}\:{x} \\ $$ $${so}\:{why}\:{x}\rightarrow\infty\:???\:\:{it}\:{should}\:{be}\:{x}\rightarrow\mathrm{0}! \\ $$ | ||
Commented bytanmay.chaudhury50@gmail.com last updated on 29/Apr/18 | ||
$${check}\:{the}\:{question}\:....{when}\:{x}\rightarrow\infty\:{the}\:{expression}\: \\ $$ $${has}\:{min}\:{value}\:{that}\:{is}\:\mathrm{2} \\ $$ $${the}\:{value}\:{of}\:{k}\:{is}\:\mathrm{10}/\mathrm{2}=\mathrm{5} \\ $$ $${whenx}\rightarrow\mathrm{0}\:{the}\:{expression}\:{become}\:\infty\:,\:{then}\: \\ $$ $${value}\:{of}\:{k}\:{is}\:\mathrm{10}/\infty=\mathrm{0}\: \\ $$ $${min}\:{value}\:{of}\:{k}=\mathrm{0}\:{and}\:{max}\:{value}\:{of}\:{k}=\mathrm{5} \\ $$ $${the}\:{question}\:{posted}\:{by}\:{you}\:\:{has}\:{some}\:\:{error} \\ $$ $$ \\ $$ | ||