Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33570 by Joel578 last updated on 19/Apr/18

A = Σ_(n=2) ^(2017)  [∫_1 ^n  2tan^(−1)  x + sin^(−1) (((2x)/(1 + x^2 ))) dx]  B = Π_(n=2) ^(2017)  [∫_1 ^n  2tan^(−1)  x + sin^(−1) (((2x)/(1 + x^2 ))) dx]  A + B = ...

$${A}\:=\:\underset{{n}=\mathrm{2}} {\overset{\mathrm{2017}} {\sum}}\:\left[\underset{\mathrm{1}} {\overset{{n}} {\int}}\:\mathrm{2tan}^{−\mathrm{1}} \:{x}\:+\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\right)\:{dx}\right] \\ $$$${B}\:=\:\underset{{n}=\mathrm{2}} {\overset{\mathrm{2017}} {\prod}}\:\left[\underset{\mathrm{1}} {\overset{{n}} {\int}}\:\mathrm{2tan}^{−\mathrm{1}} \:{x}\:+\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\right)\:{dx}\right] \\ $$$${A}\:+\:{B}\:=\:... \\ $$

Commented by MJS last updated on 19/Apr/18

A=B, yes?

$${A}={B},\:\mathrm{yes}? \\ $$

Commented by Joel578 last updated on 20/Apr/18

A and B have different symbol Σ  and Π  But I dont know if they lead to the same result  I will try it later

$${A}\:\mathrm{and}\:{B}\:\mathrm{have}\:\mathrm{different}\:\mathrm{symbol}\:\Sigma\:\:\mathrm{and}\:\Pi \\ $$$$\mathrm{But}\:\mathrm{I}\:\mathrm{dont}\:\mathrm{know}\:\mathrm{if}\:\mathrm{they}\:\mathrm{lead}\:\mathrm{to}\:\mathrm{the}\:\mathrm{same}\:\mathrm{result} \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{try}\:\mathrm{it}\:\mathrm{later} \\ $$

Commented by MJS last updated on 20/Apr/18

sorry, I didn′t notice

$$\mathrm{sorry},\:\mathrm{I}\:\mathrm{didn}'\mathrm{t}\:\mathrm{notice} \\ $$

Answered by MJS last updated on 20/Apr/18

θ=2tan^(−1)  x ⇒ x=tan (θ/2) ∧ −π≤θ≤π  sin α=((2tan (α/2))/(1+tan^2  (α/2))) ⇒ sin^(−1)  ((2x)/(1+x^2 ))=θ ∧ −(π/2)≤θ≤(π/2)  ⇒  { ((π+2tan^(−1)  x=−sin^(−1)  ((2x)/(1+x^2 )); x∈]−∞;−1])),((2tan^(−1)  x=sin^(−1)  ((2x)/(1+x^2 )); x∈[−1;1])),((π−2tan^(−1)  x=sin^(−1)  ((2x)/(1+x^2 )); x∈[1;∞[)) :}  ⇒  { ((2tan^(−1)  x + sin^(−1)  ((2x)/(1 + x^2 ))=−π; x∈]−∞;−1])),((2tan^(−1)  x + sin^(−1)  ((2x)/(1 + x^2 ))4tan^(−1)  x; x∈[−1;1])),((2tan^(−1)  x + sin^(−1)  ((2x)/(1 + x^2 ))π; x∈[1;∞[)) :}    ⇒ A=Σ_(n=2) ^(2017)  ∫_1 ^n πdx=Σ_(n=2) ^(2017)  [πx]_1 ^n =Σ_(n=2) ^(2017)  π(n−1)=Σ_(n=1) ^(2016) πn=2033136π        B=Π_(n=1) ^(2016)  πn=2016!π^(2016)   ⇒ A+B=2033136π+2016!π^(2016)

$$\theta=\mathrm{2tan}^{−\mathrm{1}} \:{x}\:\Rightarrow\:{x}=\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\:\wedge\:−\pi\leqslant\theta\leqslant\pi \\ $$$$\mathrm{sin}\:\alpha=\frac{\mathrm{2tan}\:\frac{\alpha}{\mathrm{2}}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\frac{\alpha}{\mathrm{2}}}\:\Rightarrow\:\mathrm{sin}^{−\mathrm{1}} \:\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }=\theta\:\wedge\:−\frac{\pi}{\mathrm{2}}\leqslant\theta\leqslant\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\:\begin{cases}{\left.\pi\left.+\mathrm{2tan}^{−\mathrm{1}} \:{x}=−\mathrm{sin}^{−\mathrm{1}} \:\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} };\:{x}\in\right]−\infty;−\mathrm{1}\right]}\\{\mathrm{2tan}^{−\mathrm{1}} \:{x}=\mathrm{sin}^{−\mathrm{1}} \:\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} };\:{x}\in\left[−\mathrm{1};\mathrm{1}\right]}\\{\pi−\mathrm{2tan}^{−\mathrm{1}} \:{x}=\mathrm{sin}^{−\mathrm{1}} \:\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} };\:{x}\in\left[\mathrm{1};\infty\left[\right.\right.}\end{cases} \\ $$$$\Rightarrow\:\begin{cases}{\left.\mathrm{2}\left.\mathrm{tan}^{−\mathrm{1}} \:{x}\:+\:\mathrm{sin}^{−\mathrm{1}} \:\frac{\mathrm{2}{x}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }=−\pi;\:{x}\in\right]−\infty;−\mathrm{1}\right]}\\{\mathrm{2tan}^{−\mathrm{1}} \:{x}\:+\:\mathrm{sin}^{−\mathrm{1}} \:\frac{\mathrm{2}{x}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\mathrm{4tan}^{−\mathrm{1}} \:{x};\:{x}\in\left[−\mathrm{1};\mathrm{1}\right]}\\{\mathrm{2tan}^{−\mathrm{1}} \:{x}\:+\:\mathrm{sin}^{−\mathrm{1}} \:\frac{\mathrm{2}{x}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\pi;\:{x}\in\left[\mathrm{1};\infty\left[\right.\right.}\end{cases} \\ $$$$ \\ $$$$\Rightarrow\:{A}=\underset{{n}=\mathrm{2}} {\overset{\mathrm{2017}} {\sum}}\:\underset{\mathrm{1}} {\overset{{n}} {\int}}\pi{dx}=\underset{{n}=\mathrm{2}} {\overset{\mathrm{2017}} {\sum}}\:\left[\pi{x}\right]_{\mathrm{1}} ^{{n}} =\underset{{n}=\mathrm{2}} {\overset{\mathrm{2017}} {\sum}}\:\pi\left({n}−\mathrm{1}\right)=\underset{{n}=\mathrm{1}} {\overset{\mathrm{2016}} {\sum}}\pi{n}=\mathrm{2033136}\pi \\ $$$$\:\:\:\:\:\:{B}=\underset{{n}=\mathrm{1}} {\overset{\mathrm{2016}} {\prod}}\:\pi{n}=\mathrm{2016}!\pi^{\mathrm{2016}} \\ $$$$\Rightarrow\:{A}+{B}=\mathrm{2033136}\pi+\mathrm{2016}!\pi^{\mathrm{2016}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com