Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 33336 by prof Abdo imad last updated on 14/Apr/18

study the convergence of  Σ_(n=1) ^∞ ln(1+(x/n^2 ))

$${study}\:{the}\:{convergence}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} {ln}\left(\mathrm{1}+\frac{{x}}{{n}^{\mathrm{2}} }\right) \\ $$

Commented by prof Abdo imad last updated on 25/Apr/18

we have ln(1+(x/n^2 )) ∼ (x/n^2 ) and the serie Σ_(n≥1) (x/n^2 )  is convergent so the serie Σ_(n≥1)   ln(1+(x/n^2 )) is  convergent .

$${we}\:{have}\:{ln}\left(\mathrm{1}+\frac{{x}}{{n}^{\mathrm{2}} }\right)\:\sim\:\frac{{x}}{{n}^{\mathrm{2}} }\:{and}\:{the}\:{serie}\:\sum_{{n}\geqslant\mathrm{1}} \frac{{x}}{{n}^{\mathrm{2}} } \\ $$$${is}\:{convergent}\:{so}\:{the}\:{serie}\:\sum_{{n}\geqslant\mathrm{1}} \:\:{ln}\left(\mathrm{1}+\frac{{x}}{{n}^{\mathrm{2}} }\right)\:{is} \\ $$$${convergent}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com