Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 3324 by prakash jain last updated on 10/Dec/15

Prove that among all triangle of equal  perimeter, equilateral triangle has the  largest area.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{among}\:\mathrm{all}\:\mathrm{triangle}\:\mathrm{of}\:\mathrm{equal} \\ $$$$\mathrm{perimeter},\:\mathrm{equilateral}\:\mathrm{triangle}\:\mathrm{has}\:\mathrm{the} \\ $$$$\mathrm{largest}\:\mathrm{area}. \\ $$

Commented by 123456 last updated on 10/Dec/15

2s(x,y,z)=x+y+z  A(x,y,z)=(√(s(s−a)(s−b)(s−c)))

$$\mathrm{2}{s}\left({x},{y},{z}\right)={x}+{y}+{z} \\ $$$$\mathrm{A}\left({x},{y},{z}\right)=\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)} \\ $$

Commented by Rasheed Soomro last updated on 11/Dec/15

Let x,x+l  and  x+l+m  are measures of  three sides  where l,m≥0        Perimeter=3x+2l+m           S=((3x+2l+m)/2)  In Equilateral triangle S=((3x)/2)  for l,m=0               A_△ =(√(((3x)/2)(((3x)/2)−x)^3 ))=(√(((3x)/2)×(x^3 /2^3 )))                  =(√((3x^4 )/2^4 ))=(((√3) x^2 )/4)  As S is constant (because perimeter is constant  Hence for any triangle S              S=((3x)/2)  Area of any triangle     A=(√(((3x)/2)(((3x)/2)−x)(((3x)/2)−x−l)(((3x)/2)−x−l−m)))         =(√(((3x)/2)×(x/2)×((x−2l)/2)×((x−2l−2m)/2)))        =((√(3x^2 (x−2l)(x−2l−2m)))/4)  We have to prove               A_△ ≥A  (((√3) x^2 )/4)≥((√(3x^2 (x−2l)(x−2l−2m)))/4)  for l,m≥0  C^(ONTINUE)

$${Let}\:{x},{x}+{l}\:\:{and}\:\:{x}+{l}+{m}\:\:{are}\:{measures}\:{of}\:\:{three}\:{sides} \\ $$$${where}\:{l},{m}\geqslant\mathrm{0} \\ $$$$\:\:\:\:\:\:{Perimeter}=\mathrm{3}{x}+\mathrm{2}{l}+{m} \\ $$$$\:\:\:\:\:\:\:\:\:{S}=\frac{\mathrm{3}{x}+\mathrm{2}{l}+{m}}{\mathrm{2}} \\ $$$$\mathcal{I}{n}\:\mathcal{E}{quilateral}\:{triangle}\:{S}=\frac{\mathrm{3}{x}}{\mathrm{2}}\:\:{for}\:{l},{m}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{A}_{\bigtriangleup} =\sqrt{\frac{\mathrm{3}{x}}{\mathrm{2}}\left(\frac{\mathrm{3}{x}}{\mathrm{2}}−{x}\right)^{\mathrm{3}} }=\sqrt{\frac{\mathrm{3}{x}}{\mathrm{2}}×\frac{{x}^{\mathrm{3}} }{\mathrm{2}^{\mathrm{3}} }} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\sqrt{\frac{\mathrm{3}{x}^{\mathrm{4}} }{\mathrm{2}^{\mathrm{4}} }}=\frac{\sqrt{\mathrm{3}}\:{x}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${As}\:{S}\:{is}\:{constant}\:\left({because}\:{perimeter}\:{is}\:{constant}\right. \\ $$$${Hence}\:{for}\:{any}\:{triangle}\:{S} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{S}=\frac{\mathrm{3}{x}}{\mathrm{2}} \\ $$$${Area}\:{of}\:{any}\:{triangle}\: \\ $$$$\:\:{A}=\sqrt{\frac{\mathrm{3}{x}}{\mathrm{2}}\left(\frac{\mathrm{3}{x}}{\mathrm{2}}−{x}\right)\left(\frac{\mathrm{3}{x}}{\mathrm{2}}−{x}−{l}\right)\left(\frac{\mathrm{3}{x}}{\mathrm{2}}−{x}−{l}−{m}\right)} \\ $$$$\:\:\:\:\:\:\:=\sqrt{\frac{\mathrm{3}{x}}{\mathrm{2}}×\frac{{x}}{\mathrm{2}}×\frac{{x}−\mathrm{2}{l}}{\mathrm{2}}×\frac{{x}−\mathrm{2}{l}−\mathrm{2}{m}}{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:=\frac{\sqrt{\mathrm{3}{x}^{\mathrm{2}} \left({x}−\mathrm{2}{l}\right)\left({x}−\mathrm{2}{l}−\mathrm{2}{m}\right)}}{\mathrm{4}} \\ $$$${We}\:{have}\:{to}\:{prove}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{A}_{\bigtriangleup} \geqslant{A} \\ $$$$\frac{\sqrt{\mathrm{3}}\:{x}^{\mathrm{2}} }{\mathrm{4}}\geqslant\frac{\sqrt{\mathrm{3}{x}^{\mathrm{2}} \left({x}−\mathrm{2}{l}\right)\left({x}−\mathrm{2}{l}−\mathrm{2}{m}\right)}}{\mathrm{4}}\:\:{for}\:{l},{m}\geqslant\mathrm{0} \\ $$$${C}^{\mathcal{ONTINUE}} \\ $$

Commented by prakash jain last updated on 11/Dec/15

From your derivation  In your formula for area  a=x, b=x−l, c=x−l−m  how s=((3x)/2)

$$\mathrm{From}\:\mathrm{your}\:\mathrm{derivation} \\ $$$$\mathrm{In}\:\mathrm{your}\:\mathrm{formula}\:\mathrm{for}\:\mathrm{area} \\ $$$${a}={x},\:{b}={x}−{l},\:{c}={x}−{l}−{m} \\ $$$${how}\:{s}=\frac{\mathrm{3}{x}}{\mathrm{2}} \\ $$

Commented by Rasheed Soomro last updated on 12/Dec/15

For equilateral triangle of side x  S=((3x)/2)  and I have used this also  in case of common  triangle,because the perimeter is constant.  But now I have changed my mind. I am working  on different way. Pl see my answer below.  I am always  thankful to you for guidance.

$${For}\:{equilateral}\:{triangle}\:{of}\:{side}\:{x}\:\:{S}=\frac{\mathrm{3}{x}}{\mathrm{2}} \\ $$$${and}\:{I}\:{have}\:{used}\:{this}\:{also}\:\:{in}\:{case}\:{of}\:{common} \\ $$$${triangle},{because}\:{the}\:{perimeter}\:{is}\:{constant}. \\ $$$$\mathcal{B}{ut}\:{now}\:{I}\:{have}\:{changed}\:{my}\:{mind}.\:{I}\:{am}\:{working} \\ $$$${on}\:{different}\:{way}.\:{Pl}\:{see}\:{my}\:{answer}\:{below}. \\ $$$${I}\:{am}\:{always}\:\:\boldsymbol{\mathrm{thankful}}\:{to}\:{you}\:{for}\:{guidance}. \\ $$

Answered by Rasheed Soomro last updated on 13/Dec/15

Area  of  Common Triangle  Let the measures of sides of  a common triangle are  x,y,z   Area(A) will be        A=(√(S(S−x)(S−y)(S−x)))    ;  S=(1/2)(x+y+z)      =(√(((x+y+z)/2)(((x+y+z)/2)−x)(((x+y+z)/2)−y)(((x+y+z)/2)−z)))      =(√((((x+y+z)/2))(((x+y+z−2x)/2))(((x+y+z−2y)/2))(((x+y+z−2z)/2))))      =(√((((x+y+z)/2))(((−x+y+z)/2))(((x−y+z)/2))(((x+y−z)/2))))      =(1/4)(√((x+y+z)(−x+y+z)(x−y+z)(x+y−z)))  Area  of  Equilateral Triangle  ∴ Every side  of  of an equilateral triangle having   same perimeter (x+y+z) is  ((x+y+z)/3)   ∴   A_△ =(√(S(S− ((x+y+z)/3))^3 ))               =(√(((x+y+z)/2)×(((x+y+z)/2)−((x+y+z)/3))^3 ))               =(√(((x+y+z)/2)×(((3x+3y+3z−2x−2y−2z)/6))^3 ))               =(√(((x+y+z)/2)×(((x+y+z)/6))^3 ))                =(√(((x+y+z)^4 )/(2^4 ×3^2 ×3)))=(((x+y+z)^2 )/(12))×(1/(√3))          A_△ =(((x+y+z)^2 )/(12(√3)))  −−−−−<><><><>−−−−−  Now we have to prove:  A_△ ≥A    (((x+y+z)^2 )/(12(√3)))≥(1/4)(√((x+y+z)(−x+y+z)(x−y+z)(x+y−z)))                                                                                           for x,y,z>0  ⇒(((x+y+z)^2 )/(3(√3)))≥(√((x+y+z)(−x+y+z)(x−y+z)(x+y−z)))  Yozzi′s contribution:  Yozzi has proved that  ⇒(((x+y+z)^2 )/4)≥(√((x+y+z)(−x+y+z)(x−y+z)(x+y−z)))  (See answer  by Yozzi. An approach I can′t even  think of!)  Now since 4<3(√3)  ∴    (((x+y+z)^2 )/(3(√3)))≥(√((x+y+z)(−x+y+z)(x−y+z)(x+y−z)))  ∴ A_△ ≥A  QED

$$\mathcal{A}{rea}\:\:{of}\:\:\mathcal{C}{ommon}\:\mathcal{T}{riangle} \\ $$$${Let}\:{the}\:{measures}\:{of}\:{sides}\:{of}\:\:{a}\:{common}\:{triangle}\:{are} \\ $$$${x},{y},{z}\: \\ $$$$\mathcal{A}{rea}\left({A}\right)\:{will}\:{be} \\ $$$$\:\:\:\:\:\:{A}=\sqrt{{S}\left({S}−{x}\right)\left({S}−{y}\right)\left({S}−{x}\right)}\:\:\:\:;\:\:{S}=\frac{\mathrm{1}}{\mathrm{2}}\left({x}+{y}+{z}\right) \\ $$$$\:\:\:\:=\sqrt{\frac{{x}+{y}+{z}}{\mathrm{2}}\left(\frac{{x}+{y}+{z}}{\mathrm{2}}−{x}\right)\left(\frac{{x}+{y}+{z}}{\mathrm{2}}−{y}\right)\left(\frac{{x}+{y}+{z}}{\mathrm{2}}−{z}\right)} \\ $$$$\:\:\:\:=\sqrt{\left(\frac{{x}+{y}+{z}}{\mathrm{2}}\right)\left(\frac{{x}+{y}+{z}−\mathrm{2}{x}}{\mathrm{2}}\right)\left(\frac{{x}+{y}+{z}−\mathrm{2}{y}}{\mathrm{2}}\right)\left(\frac{{x}+{y}+{z}−\mathrm{2}{z}}{\mathrm{2}}\right)} \\ $$$$\:\:\:\:=\sqrt{\left(\frac{{x}+{y}+{z}}{\mathrm{2}}\right)\left(\frac{−{x}+{y}+{z}}{\mathrm{2}}\right)\left(\frac{{x}−{y}+{z}}{\mathrm{2}}\right)\left(\frac{{x}+{y}−{z}}{\mathrm{2}}\right)} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\left({x}+{y}+{z}\right)\left(−{x}+{y}+{z}\right)\left({x}−{y}+{z}\right)\left({x}+{y}−{z}\right)} \\ $$$$\mathcal{A}{rea}\:\:{of}\:\:\mathcal{E}{quilateral}\:\mathcal{T}{riangle} \\ $$$$\therefore\:{Every}\:{side}\:\:{of}\:\:{of}\:{an}\:{equilateral}\:{triangle}\:{having}\: \\ $$$${same}\:{perimeter}\:\left({x}+{y}+{z}\right)\:{is}\:\:\frac{{x}+{y}+{z}}{\mathrm{3}} \\ $$$$\:\therefore\:\:\:{A}_{\bigtriangleup} =\sqrt{{S}\left({S}−\:\frac{{x}+{y}+{z}}{\mathrm{3}}\right)^{\mathrm{3}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\sqrt{\frac{{x}+{y}+{z}}{\mathrm{2}}×\left(\frac{{x}+{y}+{z}}{\mathrm{2}}−\frac{{x}+{y}+{z}}{\mathrm{3}}\right)^{\mathrm{3}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\sqrt{\frac{{x}+{y}+{z}}{\mathrm{2}}×\left(\frac{\mathrm{3}{x}+\mathrm{3}{y}+\mathrm{3}{z}−\mathrm{2}{x}−\mathrm{2}{y}−\mathrm{2}{z}}{\mathrm{6}}\right)^{\mathrm{3}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\sqrt{\frac{{x}+{y}+{z}}{\mathrm{2}}×\left(\frac{{x}+{y}+{z}}{\mathrm{6}}\right)^{\mathrm{3}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\sqrt{\frac{\left({x}+{y}+{z}\right)^{\mathrm{4}} }{\mathrm{2}^{\mathrm{4}} ×\mathrm{3}^{\mathrm{2}} ×\mathrm{3}}}=\frac{\left({x}+{y}+{z}\right)^{\mathrm{2}} }{\mathrm{12}}×\frac{\mathrm{1}}{\sqrt{\mathrm{3}}} \\ $$$$\:\:\:\:\:\:\:\:{A}_{\bigtriangleup} =\frac{\left({x}+{y}+{z}\right)^{\mathrm{2}} }{\mathrm{12}\sqrt{\mathrm{3}}} \\ $$$$−−−−−<><><><>−−−−− \\ $$$${Now}\:{we}\:{have}\:{to}\:{prove}: \\ $$$${A}_{\bigtriangleup} \geqslant{A} \\ $$$$\:\:\frac{\left({x}+{y}+{z}\right)^{\mathrm{2}} }{\mathrm{12}\sqrt{\mathrm{3}}}\geqslant\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\left({x}+{y}+{z}\right)\left(−{x}+{y}+{z}\right)\left({x}−{y}+{z}\right)\left({x}+{y}−{z}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{for}\:{x},{y},{z}>\mathrm{0} \\ $$$$\Rightarrow\frac{\left({x}+{y}+{z}\right)^{\mathrm{2}} }{\mathrm{3}\sqrt{\mathrm{3}}}\geqslant\sqrt{\left({x}+{y}+{z}\right)\left(−{x}+{y}+{z}\right)\left({x}−{y}+{z}\right)\left({x}+{y}−{z}\right)} \\ $$$$\boldsymbol{\mathrm{Yozzi}}'{s}\:\boldsymbol{\mathrm{contribution}}: \\ $$$${Yozzi}\:{has}\:{proved}\:{that} \\ $$$$\Rightarrow\frac{\left({x}+{y}+{z}\right)^{\mathrm{2}} }{\mathrm{4}}\geqslant\sqrt{\left({x}+{y}+{z}\right)\left(−{x}+{y}+{z}\right)\left({x}−{y}+{z}\right)\left({x}+{y}−{z}\right)} \\ $$$$\left({See}\:{answer}\:\:{by}\:{Yozzi}.\:{An}\:{approach}\:{I}\:{can}'{t}\:{even}\right. \\ $$$$\left.{think}\:{of}!\right) \\ $$$${Now}\:{since}\:\mathrm{4}<\mathrm{3}\sqrt{\mathrm{3}} \\ $$$$\therefore\:\:\:\:\frac{\left({x}+{y}+{z}\right)^{\mathrm{2}} }{\mathrm{3}\sqrt{\mathrm{3}}}\geqslant\sqrt{\left({x}+{y}+{z}\right)\left(−{x}+{y}+{z}\right)\left({x}−{y}+{z}\right)\left({x}+{y}−{z}\right)} \\ $$$$\therefore\:{A}_{\bigtriangleup} \geqslant{A} \\ $$$${QED} \\ $$

Commented by Rasheed Soomro last updated on 14/Dec/15

(((x+y+z)^2 )/4)≥(√(Π_(r=1) ^4 a_r ))  it cannot solely lead one to safely stating  that (((x+y+z)^2 )/(3(√3)))≥(√(Π_(r=1) ^4 a_r )) .  ⋮  Why transitive property of inequality doesn′t  help ?  If we have to prove that A>B  and  we have  by some way (A/2)>B  (A/2)>B ⇒ A>B ?

$$\frac{\left({x}+{y}+{z}\right)^{\mathrm{2}} }{\mathrm{4}}\geqslant\sqrt{\underset{{r}=\mathrm{1}} {\overset{\mathrm{4}} {\prod}}{a}_{{r}} } \\ $$$${it}\:{cannot}\:{solely}\:{lead}\:{one}\:{to}\:{safely}\:{stating} \\ $$$${that}\:\frac{\left({x}+{y}+{z}\right)^{\mathrm{2}} }{\mathrm{3}\sqrt{\mathrm{3}}}\geqslant\sqrt{\underset{{r}=\mathrm{1}} {\overset{\mathrm{4}} {\prod}}{a}_{{r}} }\:. \\ $$$$\vdots \\ $$$${Why}\:{transitive}\:{property}\:{of}\:{inequality}\:{doesn}'{t} \\ $$$${help}\:? \\ $$$${If}\:{we}\:{have}\:{to}\:{prove}\:{that}\:{A}>{B}\:\:{and}\:\:{we}\:{have} \\ $$$${by}\:{some}\:{way}\:\frac{{A}}{\mathrm{2}}>{B} \\ $$$$\frac{{A}}{\mathrm{2}}>{B}\:\Rightarrow\:{A}>{B}\:? \\ $$$$ \\ $$

Commented by Yozzii last updated on 13/Dec/15

If 4<3(√3)⇒(1/4)>(1/(3(√3)))⇒(((x+y+z)^2 )/4)>(((x+y+z)^2 )/(3(√3)))  Now, we really weren′t given that  A_△ ≥A. Even if we were to check   that this is the case, we would have  to decompose the inequality to a  form that the information we have  about the situation is satisfies. The  AM−GM sadly didn′t help as I had  hoped it would because while it  shows that   (((x+y+z)^2 )/4)≥(√(Π_(r=1) ^4 a_r ))  it cannot solely lead one to safely stating  that (((x+y+z)^2 )/(3(√3)))≥(√(Π_(r=1) ^4 a_r )) .    The transitive property of inequalities  wouldn′t have worked for us in this  approach :( .

$${If}\:\mathrm{4}<\mathrm{3}\sqrt{\mathrm{3}}\Rightarrow\frac{\mathrm{1}}{\mathrm{4}}>\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{3}}}\Rightarrow\frac{\left({x}+{y}+{z}\right)^{\mathrm{2}} }{\mathrm{4}}>\frac{\left({x}+{y}+{z}\right)^{\mathrm{2}} }{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$${Now},\:{we}\:{really}\:{weren}'{t}\:{given}\:{that} \\ $$$${A}_{\bigtriangleup} \geqslant{A}.\:{Even}\:{if}\:{we}\:{were}\:{to}\:{check}\: \\ $$$${that}\:{this}\:{is}\:{the}\:{case},\:{we}\:{would}\:{have} \\ $$$${to}\:{decompose}\:{the}\:{inequality}\:{to}\:{a} \\ $$$${form}\:{that}\:{the}\:{information}\:{we}\:{have} \\ $$$${about}\:{the}\:{situation}\:{is}\:{satisfies}.\:{The} \\ $$$${AM}−{GM}\:{sadly}\:{didn}'{t}\:{help}\:{as}\:{I}\:{had} \\ $$$${hoped}\:{it}\:{would}\:{because}\:{while}\:{it} \\ $$$${shows}\:{that}\: \\ $$$$\frac{\left({x}+{y}+{z}\right)^{\mathrm{2}} }{\mathrm{4}}\geqslant\sqrt{\underset{{r}=\mathrm{1}} {\overset{\mathrm{4}} {\prod}}{a}_{{r}} } \\ $$$${it}\:{cannot}\:{solely}\:{lead}\:{one}\:{to}\:{safely}\:{stating} \\ $$$${that}\:\frac{\left({x}+{y}+{z}\right)^{\mathrm{2}} }{\mathrm{3}\sqrt{\mathrm{3}}}\geqslant\sqrt{\underset{{r}=\mathrm{1}} {\overset{\mathrm{4}} {\prod}}{a}_{{r}} }\:. \\ $$$$ \\ $$$${The}\:{transitive}\:{property}\:{of}\:{inequalities} \\ $$$${wouldn}'{t}\:{have}\:{worked}\:{for}\:{us}\:{in}\:{this} \\ $$$${approach}\::\left(\:.\right. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Yozzii last updated on 14/Dec/15

Say we have the following  problem.  −−−−−−−−−−−−−−−−−−−−−  We want to show p>q. We have that  r>q and r=np where n,p,q∈R^+   ∴  np>q⇒p>(1/n)q.  q=(√(Π_(r=1) ^4 a_r )).    Let p=(u/(3(√3))) and r=(u/4) ,u=(x+y+z)^2 .  u=3p(√3)⇒r=((3p(√3))/4)⇒ n=((3(√3))/4).  ∴ p>(4/(3(√3)))q   ((16)/(27))=((4/(3(√3))))^2 ⇒ 0<(4/(3(√3)))<1.  ∴ The information only shows that  p>(4/(3(√3)))q and not p>q since (4/(3(√3)))q<q.  On a number line we have three cases  due to this result:  (i)   0^→ ...............(4/(3(√3)))q........p....q....  (ii) 0^→ ...............(4/(3(√3)))q........q....p.....  (iii)0^→ ..............(4/(3(√3)))q.......p=q......  Which is correct?

$${Say}\:{we}\:{have}\:{the}\:{following}\:\:{problem}. \\ $$$$−−−−−−−−−−−−−−−−−−−−− \\ $$$${We}\:{want}\:{to}\:{show}\:{p}>{q}.\:{We}\:{have}\:{that} \\ $$$${r}>{q}\:{and}\:{r}={np}\:{where}\:{n},{p},{q}\in\mathbb{R}^{+} \\ $$$$\therefore\:\:{np}>{q}\Rightarrow{p}>\frac{\mathrm{1}}{{n}}{q}.\:\:{q}=\sqrt{\underset{{r}=\mathrm{1}} {\overset{\mathrm{4}} {\prod}}{a}_{{r}} }. \\ $$$$ \\ $$$${Let}\:{p}=\frac{{u}}{\mathrm{3}\sqrt{\mathrm{3}}}\:{and}\:{r}=\frac{{u}}{\mathrm{4}}\:,{u}=\left({x}+{y}+{z}\right)^{\mathrm{2}} . \\ $$$${u}=\mathrm{3}{p}\sqrt{\mathrm{3}}\Rightarrow{r}=\frac{\mathrm{3}{p}\sqrt{\mathrm{3}}}{\mathrm{4}}\Rightarrow\:{n}=\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{4}}. \\ $$$$\therefore\:{p}>\frac{\mathrm{4}}{\mathrm{3}\sqrt{\mathrm{3}}}{q}\: \\ $$$$\frac{\mathrm{16}}{\mathrm{27}}=\left(\frac{\mathrm{4}}{\mathrm{3}\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} \Rightarrow\:\mathrm{0}<\frac{\mathrm{4}}{\mathrm{3}\sqrt{\mathrm{3}}}<\mathrm{1}. \\ $$$$\therefore\:{The}\:{information}\:{only}\:{shows}\:{that} \\ $$$${p}>\frac{\mathrm{4}}{\mathrm{3}\sqrt{\mathrm{3}}}{q}\:{and}\:{not}\:{p}>{q}\:{since}\:\frac{\mathrm{4}}{\mathrm{3}\sqrt{\mathrm{3}}}{q}<{q}. \\ $$$${On}\:{a}\:{number}\:{line}\:{we}\:{have}\:{three}\:{cases} \\ $$$${due}\:{to}\:{this}\:{result}: \\ $$$$\left({i}\right)\:\:\:\overset{\rightarrow} {\mathrm{0}}...............\frac{\mathrm{4}}{\mathrm{3}\sqrt{\mathrm{3}}}{q}........{p}....{q}.... \\ $$$$\left({ii}\right)\:\overset{\rightarrow} {\mathrm{0}}...............\frac{\mathrm{4}}{\mathrm{3}\sqrt{\mathrm{3}}}{q}........{q}....{p}..... \\ $$$$\left({iii}\right)\overset{\rightarrow} {\mathrm{0}}..............\frac{\mathrm{4}}{\mathrm{3}\sqrt{\mathrm{3}}}{q}.......{p}={q}...... \\ $$$${Which}\:{is}\:{correct}? \\ $$

Commented by Rasheed Soomro last updated on 15/Dec/15

T^(H^A N) K_(Ssss) !

$$\mathcal{T}^{\mathcal{H}^{\mathcal{A}} \mathcal{N}} \mathcal{K}_{\mathcal{S}{sss}} ! \\ $$

Commented by Yozzii last updated on 14/Dec/15

Let r>7 and r=1.2p.  ∴1.2p>7⇒p>(7/(1.2)) but this  doesn′t show that p>7.     Similarly,  (((z+y+x)^2 )/4)≥(√(Π_(r=1) ^4 a_r ))  ⇒(x+y+z)^2 ≥4(√(Π_(r=1) ^4 a_r ))  ⇒(((x+y+z)^2 )/(3(√3)))≥(4/(3(√3)))(√(Π_(r=1) ^4 a_r ))≱(√(Π_(r=1) ^4 a_r )) since (4/(3(√3)))≯1

$${Let}\:{r}>\mathrm{7}\:{and}\:{r}=\mathrm{1}.\mathrm{2}{p}. \\ $$$$\therefore\mathrm{1}.\mathrm{2}{p}>\mathrm{7}\Rightarrow{p}>\frac{\mathrm{7}}{\mathrm{1}.\mathrm{2}}\:{but}\:{this} \\ $$$${doesn}'{t}\:{show}\:{that}\:{p}>\mathrm{7}. \\ $$$$ \\ $$$$\:{Similarly}, \\ $$$$\frac{\left({z}+{y}+{x}\right)^{\mathrm{2}} }{\mathrm{4}}\geqslant\sqrt{\underset{{r}=\mathrm{1}} {\overset{\mathrm{4}} {\prod}}{a}_{{r}} } \\ $$$$\Rightarrow\left({x}+{y}+{z}\right)^{\mathrm{2}} \geqslant\mathrm{4}\sqrt{\underset{{r}=\mathrm{1}} {\overset{\mathrm{4}} {\prod}}{a}_{{r}} } \\ $$$$\Rightarrow\frac{\left({x}+{y}+{z}\right)^{\mathrm{2}} }{\mathrm{3}\sqrt{\mathrm{3}}}\geqslant\frac{\mathrm{4}}{\mathrm{3}\sqrt{\mathrm{3}}}\sqrt{\underset{{r}=\mathrm{1}} {\overset{\mathrm{4}} {\prod}}{a}_{{r}} }\ngeq\sqrt{\underset{{r}=\mathrm{1}} {\overset{\mathrm{4}} {\prod}}{a}_{{r}} }\:{since}\:\frac{\mathrm{4}}{\mathrm{3}\sqrt{\mathrm{3}}}\ngtr\mathrm{1} \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 15/Dec/15

THαnNkS^(SSSssss!)

$$\boldsymbol{\mathcal{T}}\mathcal{H}\alpha{n}\boldsymbol{\mathcal{N}}\Bbbk\mathcal{S}^{\mathcal{SS}{Sssss}!} \\ $$

Answered by Yozzi last updated on 12/Dec/15

For a triangle with side lengths  x,y and z, the length of one side  cannot exceed the sum of the lengths  of the other two sides. Symbolically,  x+y−z≥0 ∧ x+z−y≥0 ∧ z+y−x≥0.    PROOF: Suppose for contradiction  that one side of length a of a given  triangle is more than the sum of the  lengths of the other two sides, denoted  by b and c.   ∴                            a>b+c  with a,b,c>0.  ⇒ a^2 >b^2 +c^2 +2bc  ⇒ a^2 −b^2 −c^2 >2bc      (∗)  By the cosine rule,   a^2 =b^2 +c^2 −2bccosθ  where θ is the angle subtended by the  meeting of the sides b and c, opposite  to a.  ⇒  −2bccosθ=a^2 −b^2 −c^2   ∴  −2bccosθ>2bc⇒cosθ<−1  ⇒ ∣cosθ∣>1. But, ∀θ∈R, ∣cosθ∣≤1.  This is a contradiction, so that   indeed a≤b+c in general and we  can show that b≤a+c and c≤a+b  likewise, for a,b,c>0.                           □  Hence, all terms under the square  root of Mr. Rasheed′s rhs expression  are non−negative.       Since all terms are positive reals, by AM−GM,  (1/4)({x+y+z}+{x+y−z}+{x+z−y}+{z+y−x})≥((x+y+z)(x+y−z)(z+y−x)(x+z−y))^(1/4)   a_1 =x+y+z,  a_2 =x+y−z  a_3 =x+z−y,  a_4 =z+y−x  (1/4)(2(x+y+z))≥(Π_(r=1) ^4 a_r )^(1/4)   ⇒(1/4)(x+y+z)^2 ≥(√(Π_(r=1) ^4 a_r ))

$${For}\:{a}\:{triangle}\:{with}\:{side}\:{lengths} \\ $$$${x},{y}\:{and}\:{z},\:{the}\:{length}\:{of}\:{one}\:{side} \\ $$$${cannot}\:{exceed}\:{the}\:{sum}\:{of}\:{the}\:{lengths} \\ $$$${of}\:{the}\:{other}\:{two}\:{sides}.\:{Symbolically}, \\ $$$${x}+{y}−{z}\geqslant\mathrm{0}\:\wedge\:{x}+{z}−{y}\geqslant\mathrm{0}\:\wedge\:{z}+{y}−{x}\geqslant\mathrm{0}. \\ $$$$ \\ $$$$\mathrm{PROOF}:\:{Suppose}\:{for}\:{contradiction} \\ $$$${that}\:{one}\:{side}\:{of}\:{length}\:\boldsymbol{{a}}\:{of}\:{a}\:{given} \\ $$$${triangle}\:{is}\:{more}\:{than}\:{the}\:{sum}\:{of}\:{the} \\ $$$${lengths}\:{of}\:{the}\:{other}\:{two}\:{sides},\:{denoted} \\ $$$${by}\:\boldsymbol{{b}}\:{and}\:\boldsymbol{{c}}.\: \\ $$$$\therefore\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{a}}>\boldsymbol{{b}}+\boldsymbol{{c}} \\ $$$${with}\:\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}}>\mathrm{0}. \\ $$$$\Rightarrow\:\boldsymbol{{a}}^{\mathrm{2}} >\boldsymbol{{b}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{{bc}} \\ $$$$\Rightarrow\:\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{b}}^{\mathrm{2}} −\boldsymbol{{c}}^{\mathrm{2}} >\mathrm{2}\boldsymbol{{bc}}\:\:\:\:\:\:\left(\ast\right) \\ $$$${By}\:{the}\:{cosine}\:{rule},\: \\ $$$$\boldsymbol{{a}}^{\mathrm{2}} =\boldsymbol{{b}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{{bc}}{cos}\theta \\ $$$${where}\:\theta\:{is}\:{the}\:{angle}\:{subtended}\:{by}\:{the} \\ $$$${meeting}\:{of}\:{the}\:{sides}\:\boldsymbol{{b}}\:{and}\:\boldsymbol{{c}},\:{opposite} \\ $$$${to}\:\boldsymbol{{a}}. \\ $$$$\Rightarrow\:\:−\mathrm{2}\boldsymbol{{bc}}{cos}\theta=\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{b}}^{\mathrm{2}} −\boldsymbol{{c}}^{\mathrm{2}} \\ $$$$\therefore\:\:−\mathrm{2}\boldsymbol{{bc}}{cos}\theta>\mathrm{2}\boldsymbol{{bc}}\Rightarrow{cos}\theta<−\mathrm{1} \\ $$$$\Rightarrow\:\mid{cos}\theta\mid>\mathrm{1}.\:{But},\:\forall\theta\in\mathbb{R},\:\mid{cos}\theta\mid\leqslant\mathrm{1}. \\ $$$${This}\:{is}\:{a}\:{contradiction},\:{so}\:{that}\: \\ $$$${indeed}\:\boldsymbol{{a}}\leqslant\boldsymbol{{b}}+\boldsymbol{{c}}\:{in}\:{general}\:{and}\:{we} \\ $$$${can}\:{show}\:{that}\:\boldsymbol{{b}}\leqslant\boldsymbol{{a}}+\boldsymbol{{c}}\:{and}\:\boldsymbol{{c}}\leqslant\boldsymbol{{a}}+\boldsymbol{{b}} \\ $$$${likewise},\:{for}\:\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}}>\mathrm{0}.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Box \\ $$$${Hence},\:{all}\:{terms}\:{under}\:{the}\:{square} \\ $$$${root}\:{of}\:{Mr}.\:{Rasheed}'{s}\:{rhs}\:{expression} \\ $$$${are}\:{non}−{negative}.\: \\ $$$$ \\ $$$$ \\ $$$${Since}\:{all}\:{terms}\:{are}\:{positive}\:{reals},\:{by}\:{AM}−{GM}, \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\left(\left\{{x}+{y}+{z}\right\}+\left\{{x}+{y}−{z}\right\}+\left\{{x}+{z}−{y}\right\}+\left\{{z}+{y}−{x}\right\}\right)\geqslant\left(\left({x}+{y}+{z}\right)\left({x}+{y}−{z}\right)\left({z}+{y}−{x}\right)\left({x}+{z}−{y}\right)\right)^{\mathrm{1}/\mathrm{4}} \\ $$$${a}_{\mathrm{1}} ={x}+{y}+{z},\:\:{a}_{\mathrm{2}} ={x}+{y}−{z} \\ $$$${a}_{\mathrm{3}} ={x}+{z}−{y},\:\:{a}_{\mathrm{4}} ={z}+{y}−{x} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{2}\left({x}+{y}+{z}\right)\right)\geqslant\left(\underset{{r}=\mathrm{1}} {\overset{\mathrm{4}} {\prod}}{a}_{{r}} \right)^{\mathrm{1}/\mathrm{4}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{4}}\left({x}+{y}+{z}\right)^{\mathrm{2}} \geqslant\sqrt{\underset{{r}=\mathrm{1}} {\overset{\mathrm{4}} {\prod}}{a}_{{r}} } \\ $$$$ \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 12/Dec/15

I  didn′t understand last two steps.  Where has a_r  come  from?

$$\mathcal{I}\:\:{didn}'{t}\:{understand}\:{last}\:{two}\:{steps}. \\ $$$$\mathcal{W}{here}\:{has}\:{a}_{{r}} \:{come}\:\:{from}? \\ $$

Commented by Yozzi last updated on 12/Dec/15

I′ve added definitions for a_r , 1≤r≤4.

$${I}'{ve}\:{added}\:{definitions}\:{for}\:{a}_{{r}} ,\:\mathrm{1}\leqslant{r}\leqslant\mathrm{4}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com