Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 33094 by abdo imad last updated on 10/Apr/18

let f(x)= (1/(1+x+x^2 ))  dvelopp f at integr serie.

$${let}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{1}+{x}+{x}^{\mathrm{2}} }\:\:{dvelopp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$

Commented by prof Abdo imad last updated on 11/Apr/18

f(x) is developped at form f(x)=Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n   but we have proved that  f^((n)) (0) = ((2(n!))/(√3)) sin(((2(n+1)π)/3))  ⇒  f(x) = Σ_(n=0) ^∞   (2/(√3)) sin(((2(n+1)π)/3)) x^n  .

$${f}\left({x}\right)\:{is}\:{developped}\:{at}\:{form}\:{f}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{f}^{\left({n}\right)} \left(\mathrm{0}\right)}{{n}!}\:{x}^{{n}} \\ $$$${but}\:{we}\:{have}\:{proved}\:{that}\:\:{f}^{\left({n}\right)} \left(\mathrm{0}\right)\:=\:\frac{\mathrm{2}\left({n}!\right)}{\sqrt{\mathrm{3}}}\:{sin}\left(\frac{\mathrm{2}\left({n}+\mathrm{1}\right)\pi}{\mathrm{3}}\right) \\ $$$$\Rightarrow\:\:{f}\left({x}\right)\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}\:{sin}\left(\frac{\mathrm{2}\left({n}+\mathrm{1}\right)\pi}{\mathrm{3}}\right)\:{x}^{{n}} \:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com