Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 32008 by gunawan last updated on 18/Mar/18

lim_(n→∞)  [((1/n))^n +((2/n))^n +..+((n/n))^n ]=...

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left[\left(\frac{\mathrm{1}}{{n}}\right)^{{n}} +\left(\frac{\mathrm{2}}{{n}}\right)^{{n}} +..+\left(\frac{{n}}{{n}}\right)^{{n}} \right]=... \\ $$

Commented by JDamian last updated on 18/Mar/18

I guess the use of x is a typo.

$${I}\:{guess}\:{the}\:{use}\:{of}\:\boldsymbol{{x}}\:{is}\:{a}\:{typo}. \\ $$

Commented by gunawan last updated on 18/Mar/18

oh i′m sorry

$$\mathrm{oh}\:\mathrm{i}'\mathrm{m}\:\mathrm{sorry} \\ $$

Commented by gunawan last updated on 18/Mar/18

her question has been changed, Sir

$$\mathrm{her}\:\mathrm{question}\:\mathrm{has}\:\mathrm{been}\:\mathrm{changed},\:\mathrm{Sir} \\ $$

Answered by ajfour last updated on 18/Mar/18

=lim_(n→0)  n[(1/n)Σ_(r=1) ^n ((r/n))^n ]  =lim_(n→0)  n∫_0 ^(  1) x^n dx = lim_(n→0)  (n/(n+1)) = 1  .

$$=\underset{{n}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{n}\left[\frac{\mathrm{1}}{{n}}\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{{r}}{{n}}\right)^{{n}} \right] \\ $$$$=\underset{{n}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{n}\int_{\mathrm{0}} ^{\:\:\mathrm{1}} {x}^{{n}} {dx}\:=\:\underset{{n}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{n}}{{n}+\mathrm{1}}\:=\:\mathrm{1}\:\:. \\ $$

Commented by gunawan last updated on 18/Mar/18

wow  thank you very much sir

$$\mathrm{wow} \\ $$$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{sir} \\ $$

Commented by gunawan last updated on 18/Mar/18

sorry to touch

$$\mathrm{sorry}\:\mathrm{to}\:\mathrm{touch} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com