Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 30087 by rahul 19 last updated on 16/Feb/18

solve:  cos3x.cos^3 x+sin 3x.sin^3 x=0.

$$\mathrm{solve}: \\ $$$$\mathrm{cos3}{x}.{cos}^{\mathrm{3}} {x}+\mathrm{sin}\:\mathrm{3}{x}.\mathrm{sin}\:^{\mathrm{3}} {x}=\mathrm{0}. \\ $$

Answered by MJS last updated on 16/Feb/18

x=(π/4)+((π∙z)/2); z∈Z  sin(π/4)=cos(π/4)∧sin((3π)/4)=−cos((3π)/4)  you can easily see this looking  at the angles in a circle

$${x}=\frac{\pi}{\mathrm{4}}+\frac{\pi\centerdot{z}}{\mathrm{2}};\:{z}\in\mathbb{Z} \\ $$$$\mathrm{sin}\frac{\pi}{\mathrm{4}}=\mathrm{cos}\frac{\pi}{\mathrm{4}}\wedge\mathrm{sin}\frac{\mathrm{3}\pi}{\mathrm{4}}=−\mathrm{cos}\frac{\mathrm{3}\pi}{\mathrm{4}} \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{easily}\:\mathrm{see}\:\mathrm{this}\:\mathrm{looking} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{angles}\:\mathrm{in}\:\mathrm{a}\:\mathrm{circle} \\ $$

Answered by MJS last updated on 16/Feb/18

...the hard way:  let me write c for cos and s for sin  c(α+β)=c(α)c(β)−s(α)s(β)  β=2α  c(3α)=c(α)c(2α)−s(α)s(2α)  c(2α)=2c^2 (α)−1  s(2α)=2s(α)c(α)  c(3α)=2c^3 (α)−c(α)−2c(α)s^2 (α)  s^2 (α)=1−c^2 (α)  c(3α)=4c^3 (α)−3c(α)    s(α+β)=s(α)c(β)+c(α)s(β)  β=2α  s(3α)=c(α)s(2α)+c(2α)s(α)  using c(2α), s(2α) as above  s(3α)=(4c^2 (α)−1)s(α)    c(3α)c^3 (α)+s(3α)s^3 (α)=0  4c^4 (α)−3c^2 (α)+(4c^2 (α)−1)s^4 (α)  s^4 (α)=(1−c^2 (α))^2   8c^6 (α)−12c^4 (α)+6c^2 (α)−1=0  c(α)=(√t)  8t^3 −12t^2 +6t−1=0  t^3 −(3/2)t^2 +(3/4)t−(1/8)=0  here you need a good eye, the  left side is  (t−(1/2))^3   so t_1 =t_2 =t_3 =(1/2)  cos(α)=((2(√2))/2)  α=(π/4)+((πz)/2); z∈Z

$$...\mathrm{the}\:\mathrm{hard}\:\mathrm{way}: \\ $$$$\mathrm{let}\:\mathrm{me}\:\mathrm{write}\:\mathrm{c}\:\mathrm{for}\:\mathrm{cos}\:\mathrm{and}\:\mathrm{s}\:\mathrm{for}\:\mathrm{sin} \\ $$$$\mathrm{c}\left(\alpha+\beta\right)=\mathrm{c}\left(\alpha\right)\mathrm{c}\left(\beta\right)−\mathrm{s}\left(\alpha\right)\mathrm{s}\left(\beta\right) \\ $$$$\beta=\mathrm{2}\alpha \\ $$$$\mathrm{c}\left(\mathrm{3}\alpha\right)=\mathrm{c}\left(\alpha\right)\mathrm{c}\left(\mathrm{2}\alpha\right)−\mathrm{s}\left(\alpha\right)\mathrm{s}\left(\mathrm{2}\alpha\right) \\ $$$$\mathrm{c}\left(\mathrm{2}\alpha\right)=\mathrm{2c}^{\mathrm{2}} \left(\alpha\right)−\mathrm{1} \\ $$$$\mathrm{s}\left(\mathrm{2}\alpha\right)=\mathrm{2s}\left(\alpha\right)\mathrm{c}\left(\alpha\right) \\ $$$$\mathrm{c}\left(\mathrm{3}\alpha\right)=\mathrm{2c}^{\mathrm{3}} \left(\alpha\right)−\mathrm{c}\left(\alpha\right)−\mathrm{2c}\left(\alpha\right)\mathrm{s}^{\mathrm{2}} \left(\alpha\right) \\ $$$$\mathrm{s}^{\mathrm{2}} \left(\alpha\right)=\mathrm{1}−\mathrm{c}^{\mathrm{2}} \left(\alpha\right) \\ $$$$\mathrm{c}\left(\mathrm{3}\alpha\right)=\mathrm{4c}^{\mathrm{3}} \left(\alpha\right)−\mathrm{3c}\left(\alpha\right) \\ $$$$ \\ $$$$\mathrm{s}\left(\alpha+\beta\right)=\mathrm{s}\left(\alpha\right)\mathrm{c}\left(\beta\right)+\mathrm{c}\left(\alpha\right)\mathrm{s}\left(\beta\right) \\ $$$$\beta=\mathrm{2}\alpha \\ $$$$\mathrm{s}\left(\mathrm{3}\alpha\right)=\mathrm{c}\left(\alpha\right)\mathrm{s}\left(\mathrm{2}\alpha\right)+\mathrm{c}\left(\mathrm{2}\alpha\right)\mathrm{s}\left(\alpha\right) \\ $$$$\mathrm{using}\:\mathrm{c}\left(\mathrm{2}\alpha\right),\:\mathrm{s}\left(\mathrm{2}\alpha\right)\:\mathrm{as}\:\mathrm{above} \\ $$$$\mathrm{s}\left(\mathrm{3}\alpha\right)=\left(\mathrm{4c}^{\mathrm{2}} \left(\alpha\right)−\mathrm{1}\right)\mathrm{s}\left(\alpha\right) \\ $$$$ \\ $$$$\mathrm{c}\left(\mathrm{3}\alpha\right)\mathrm{c}^{\mathrm{3}} \left(\alpha\right)+\mathrm{s}\left(\mathrm{3}\alpha\right)\mathrm{s}^{\mathrm{3}} \left(\alpha\right)=\mathrm{0} \\ $$$$\mathrm{4c}^{\mathrm{4}} \left(\alpha\right)−\mathrm{3c}^{\mathrm{2}} \left(\alpha\right)+\left(\mathrm{4c}^{\mathrm{2}} \left(\alpha\right)−\mathrm{1}\right)\mathrm{s}^{\mathrm{4}} \left(\alpha\right) \\ $$$$\mathrm{s}^{\mathrm{4}} \left(\alpha\right)=\left(\mathrm{1}−\mathrm{c}^{\mathrm{2}} \left(\alpha\right)\right)^{\mathrm{2}} \\ $$$$\mathrm{8c}^{\mathrm{6}} \left(\alpha\right)−\mathrm{12c}^{\mathrm{4}} \left(\alpha\right)+\mathrm{6c}^{\mathrm{2}} \left(\alpha\right)−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{c}\left(\alpha\right)=\sqrt{\mathrm{t}} \\ $$$$\mathrm{8t}^{\mathrm{3}} −\mathrm{12t}^{\mathrm{2}} +\mathrm{6t}−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{t}^{\mathrm{3}} −\frac{\mathrm{3}}{\mathrm{2}}\mathrm{t}^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}\mathrm{t}−\frac{\mathrm{1}}{\mathrm{8}}=\mathrm{0} \\ $$$$\mathrm{here}\:\mathrm{you}\:\mathrm{need}\:\mathrm{a}\:\mathrm{good}\:\mathrm{eye},\:\mathrm{the} \\ $$$$\mathrm{left}\:\mathrm{side}\:\mathrm{is} \\ $$$$\left(\mathrm{t}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} \\ $$$$\mathrm{so}\:\mathrm{t}_{\mathrm{1}} =\mathrm{t}_{\mathrm{2}} =\mathrm{t}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{cos}\left(\alpha\right)=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\alpha=\frac{\pi}{\mathrm{4}}+\frac{\pi{z}}{\mathrm{2}};\:{z}\in\mathbb{Z} \\ $$

Commented by rahul 19 last updated on 16/Feb/18

thanks.

$$\mathrm{thanks}. \\ $$

Answered by ajfour last updated on 16/Feb/18

(cos 3x)(4cos^3 x)+(sin 3x)(4sin^3 x)=0    cos 3x(cos 3x+3cos x)+           (sin 3x)(3sin x−sin 3x)=0    2cos^2 3x+6cos xcos 3x         +6sin 3xsin x−2sin^2 3x =0    1+cos 6x+3(cos 4x+cos 2x)  +3(cos 2x−cos 4x)−(1−cos 6x)=0    2cos 6x+6cos 2x =0  ⇒   3cos 2x+cos 6x=0  or   3cos 2x+4cos^3 2x−3cos 2x=0  ⇒  cos^3 2x =0  or      cos 2x =0          1−2sin^2 x=0      sin^2 x = (1/2)       x = nπ±(π/4)   .

$$\left(\mathrm{cos}\:\mathrm{3}{x}\right)\left(\mathrm{4cos}\:^{\mathrm{3}} {x}\right)+\left(\mathrm{sin}\:\mathrm{3}{x}\right)\left(\mathrm{4sin}\:^{\mathrm{3}} {x}\right)=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{cos}\:\mathrm{3}{x}\left(\mathrm{cos}\:\mathrm{3}{x}+\mathrm{3cos}\:{x}\right)+ \\ $$$$\:\:\:\:\:\:\:\:\:\left(\mathrm{sin}\:\mathrm{3}{x}\right)\left(\mathrm{3sin}\:{x}−\mathrm{sin}\:\mathrm{3}{x}\right)=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{2cos}\:^{\mathrm{2}} \mathrm{3}{x}+\mathrm{6cos}\:{x}\mathrm{cos}\:\mathrm{3}{x} \\ $$$$\:\:\:\:\:\:\:+\mathrm{6sin}\:\mathrm{3}{x}\mathrm{sin}\:{x}−\mathrm{2sin}\:^{\mathrm{2}} \mathrm{3}{x}\:=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{1}+\mathrm{cos}\:\mathrm{6}{x}+\mathrm{3}\left(\mathrm{cos}\:\mathrm{4}{x}+\mathrm{cos}\:\mathrm{2}{x}\right) \\ $$$$+\mathrm{3}\left(\mathrm{cos}\:\mathrm{2}{x}−\mathrm{cos}\:\mathrm{4}{x}\right)−\left(\mathrm{1}−\mathrm{cos}\:\mathrm{6}{x}\right)=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{2cos}\:\mathrm{6}{x}+\mathrm{6cos}\:\mathrm{2}{x}\:=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\mathrm{3cos}\:\mathrm{2}{x}+\mathrm{cos}\:\mathrm{6}{x}=\mathrm{0} \\ $$$${or}\:\:\:\mathrm{3cos}\:\mathrm{2}{x}+\mathrm{4cos}\:^{\mathrm{3}} \mathrm{2}{x}−\mathrm{3cos}\:\mathrm{2}{x}=\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{cos}\:^{\mathrm{3}} \mathrm{2}{x}\:=\mathrm{0} \\ $$$${or}\:\:\:\:\:\:\mathrm{cos}\:\mathrm{2}{x}\:=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} {x}=\mathrm{0} \\ $$$$\:\:\:\:\mathrm{sin}\:^{\mathrm{2}} {x}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\:\:\:{x}\:=\:{n}\pi\pm\frac{\pi}{\mathrm{4}}\:\:\:. \\ $$

Commented by rahul 19 last updated on 16/Feb/18

thank u sir.

$$\mathrm{thank}\:\mathrm{u}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com