Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 126666 by bramlexs22 last updated on 23/Dec/20

 3+33+333+3333+...+3333...3_(2020 times)    divide by 2. find the remainder

$$\:\mathrm{3}+\mathrm{33}+\mathrm{333}+\mathrm{3333}+...+\underset{\mathrm{2020}\:{times}} {\underbrace{\mathrm{3333}...\mathrm{3}}}\: \\ $$$${divide}\:{by}\:\mathrm{2}.\:{find}\:{the}\:{remainder} \\ $$

Answered by JDamian last updated on 23/Dec/20

it is easy  0

$${it}\:{is}\:{easy} \\ $$$$\mathrm{0} \\ $$

Answered by liberty last updated on 23/Dec/20

S= 3(1+11+111+1111+...+1111...1_(2020 times) )  S = 3(1+(1+10)+(1+10+10^2 )+...+(1+10+10^2 +...+10^(2019) ))  S=3(2020+(10×2019)+(10^2 ×2018)+...+10^(2019) )  2∣S = 0 (mod 2 )

$${S}=\:\mathrm{3}\left(\mathrm{1}+\mathrm{11}+\mathrm{111}+\mathrm{1111}+...+\underset{\mathrm{2020}\:{times}} {\underbrace{\mathrm{1111}...\mathrm{1}}}\right) \\ $$$${S}\:=\:\mathrm{3}\left(\mathrm{1}+\left(\mathrm{1}+\mathrm{10}\right)+\left(\mathrm{1}+\mathrm{10}+\mathrm{10}^{\mathrm{2}} \right)+...+\left(\mathrm{1}+\mathrm{10}+\mathrm{10}^{\mathrm{2}} +...+\mathrm{10}^{\mathrm{2019}} \right)\right) \\ $$$${S}=\mathrm{3}\left(\mathrm{2020}+\left(\mathrm{10}×\mathrm{2019}\right)+\left(\mathrm{10}^{\mathrm{2}} ×\mathrm{2018}\right)+...+\mathrm{10}^{\mathrm{2019}} \right) \\ $$$$\mathrm{2}\mid{S}\:=\:\mathrm{0}\:\left({mod}\:\mathrm{2}\:\right) \\ $$

Answered by talminator2856791 last updated on 23/Dec/20

    to find remainder of 3+33+333+.......+3333......3_(2020 times)     is equivalent finding whether it is even or odd.   the sum of any two odd numbers is even.   any multiple of 10 is even (as 10 is even)      k = 3+33+333+......+3333....3_(2020 times)     k = 3+(30+3)+(330+3)+......+(3333.....3_(2019 times) 0+3)   k = 3+3+3+......+3_(2020 3′s)  + 10j   k = 6+6+6+......+6_(1010 times)  + 10j   ⇒ k is an even number and therefore          remainder of 0 when divided by 2

$$\: \\ $$$$\:\mathrm{to}\:\mathrm{find}\:\mathrm{remainder}\:\mathrm{of}\:\mathrm{3}+\mathrm{33}+\mathrm{333}+.......+\underset{\mathrm{2020}\:\mathrm{times}} {\underbrace{\mathrm{3333}......\mathrm{3}}}\: \\ $$$$\:\mathrm{is}\:\mathrm{equivalent}\:\mathrm{finding}\:\mathrm{whether}\:\mathrm{it}\:\mathrm{is}\:\mathrm{even}\:\mathrm{or}\:\mathrm{odd}. \\ $$$$\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{any}\:\mathrm{two}\:\mathrm{odd}\:\mathrm{numbers}\:\mathrm{is}\:\mathrm{even}. \\ $$$$\:\mathrm{any}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{10}\:\mathrm{is}\:\mathrm{even}\:\left(\mathrm{as}\:\mathrm{10}\:\mathrm{is}\:\mathrm{even}\right) \\ $$$$\: \\ $$$$\:{k}\:=\:\mathrm{3}+\mathrm{33}+\mathrm{333}+......+\underset{\mathrm{2020}\:\mathrm{times}} {\underbrace{\mathrm{3333}....\mathrm{3}}}\: \\ $$$$\:{k}\:=\:\mathrm{3}+\left(\mathrm{30}+\mathrm{3}\right)+\left(\mathrm{330}+\mathrm{3}\right)+......+\left(\underset{\mathrm{2019}\:\mathrm{times}} {\underbrace{\mathrm{3333}.....\mathrm{3}}0}+\mathrm{3}\right) \\ $$$$\:{k}\:=\:\underset{\mathrm{2020}\:\mathrm{3}'\mathrm{s}} {\underbrace{\mathrm{3}+\mathrm{3}+\mathrm{3}+......+\mathrm{3}}}\:+\:\mathrm{10}{j} \\ $$$$\:{k}\:=\:\underset{\mathrm{1010}\:\mathrm{times}} {\underbrace{\mathrm{6}+\mathrm{6}+\mathrm{6}+......+\mathrm{6}}}\:+\:\mathrm{10}{j} \\ $$$$\:\Rightarrow\:{k}\:\mathrm{is}\:\mathrm{an}\:\mathrm{even}\:\mathrm{number}\:\mathrm{and}\:\mathrm{therefore}\: \\ $$$$\:\:\:\:\:\:\:\mathrm{remainder}\:\mathrm{of}\:\mathrm{0}\:\mathrm{when}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{2} \\ $$$$\: \\ $$$$\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com