Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 155335 by mathdanisur last updated on 28/Sep/21

2x^5  + 3x^4  - 7x^3  - 7x^2  + 3x + 2 = 0  x_(1.2.3.4.5)  = ?

$$\mathrm{2x}^{\mathrm{5}} \:+\:\mathrm{3x}^{\mathrm{4}} \:-\:\mathrm{7x}^{\mathrm{3}} \:-\:\mathrm{7x}^{\mathrm{2}} \:+\:\mathrm{3x}\:+\:\mathrm{2}\:=\:\mathrm{0} \\ $$$$\mathrm{x}_{\mathrm{1}.\mathrm{2}.\mathrm{3}.\mathrm{4}.\mathrm{5}} \:=\:? \\ $$

Answered by MJS_new last updated on 28/Sep/21

x^5 +(3/2)x^4 −(7/2)x^3 −(7/2)x^2 +(3/2)x+1=0  (x+1)(x^2 +((1−(√(97)))/4)x+1)(x^2 +((1+(√(97)))/4)x+1)=0  the rest is easy

$${x}^{\mathrm{5}} +\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{4}} −\frac{\mathrm{7}}{\mathrm{2}}{x}^{\mathrm{3}} −\frac{\mathrm{7}}{\mathrm{2}}{x}^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{2}}{x}+\mathrm{1}=\mathrm{0} \\ $$$$\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} +\frac{\mathrm{1}−\sqrt{\mathrm{97}}}{\mathrm{4}}{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} +\frac{\mathrm{1}+\sqrt{\mathrm{97}}}{\mathrm{4}}{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{the}\:\mathrm{rest}\:\mathrm{is}\:\mathrm{easy} \\ $$

Commented by mathdanisur last updated on 29/Sep/21

Very nice Ser, thank you

$$\mathrm{Very}\:\mathrm{nice}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com