Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 115888 by Fikret last updated on 29/Sep/20

2x+3y+4z=1  ⇒min((1/x)+(1/y)+(1/z))

$$\mathrm{2}{x}+\mathrm{3}{y}+\mathrm{4}{z}=\mathrm{1}\:\:\Rightarrow{min}\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}\right) \\ $$

Commented by mr W last updated on 29/Sep/20

let 3y+4z→1  ⇒2x+1→1  ⇒x→0  ((1/x)+(1/y)+(1/z))→∞ or −∞  ⇒no maximum or minimum !

$${let}\:\mathrm{3}{y}+\mathrm{4}{z}\rightarrow\mathrm{1} \\ $$$$\Rightarrow\mathrm{2}{x}+\mathrm{1}\rightarrow\mathrm{1} \\ $$$$\Rightarrow{x}\rightarrow\mathrm{0} \\ $$$$\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}\right)\rightarrow\infty\:{or}\:−\infty \\ $$$$\Rightarrow{no}\:{maximum}\:{or}\:{minimum}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com