Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 192928 by BaliramKumar last updated on 31/May/23

2x^2 −6x+k = 0 where k<0   ((α/β) + (β/α))_(max)  = ?

$$\mathrm{2}{x}^{\mathrm{2}} −\mathrm{6}{x}+{k}\:=\:\mathrm{0}\:{where}\:{k}<\mathrm{0}\: \\ $$$$\left(\frac{\alpha}{\beta}\:+\:\frac{\beta}{\alpha}\right)_{\mathrm{max}} \:=\:? \\ $$

Answered by MM42 last updated on 31/May/23

s=3  &  p=(k/2)  A=((α^2 +β^2 )/(αβ))=((s^2 −2p)/p)=((9−k)/(k/2))=−2+((18)/k) →^(k<0)  A<−2  ⇒if k<0⇒supA=−2  but maxA dose not exist

$${s}=\mathrm{3}\:\:\&\:\:{p}=\frac{{k}}{\mathrm{2}} \\ $$$${A}=\frac{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }{\alpha\beta}=\frac{{s}^{\mathrm{2}} −\mathrm{2}{p}}{{p}}=\frac{\mathrm{9}−{k}}{\frac{{k}}{\mathrm{2}}}=−\mathrm{2}+\frac{\mathrm{18}}{{k}}\:\overset{{k}<\mathrm{0}} {\rightarrow}\:{A}<−\mathrm{2} \\ $$$$\Rightarrow{if}\:{k}<\mathrm{0}\Rightarrow{supA}=−\mathrm{2}\:\:{but}\:{maxA}\:{dose}\:{not}\:{exist} \\ $$

Commented by BaliramKumar last updated on 31/May/23

thanks Sir

$$\mathrm{thanks}\:\mathrm{Sir} \\ $$

Commented by MM42 last updated on 31/May/23

good luck

$${good}\:{luck} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com