Question and Answers Forum

All Questions      Topic List

Probability and Statistics Questions

Previous in All Question      Next in All Question      

Previous in Probability and Statistics      Next in Probability and Statistics      

Question Number 25559 by das47955@mail.com last updated on 11/Dec/17

(1) In a single throw of three   dice,find the probability of getting  a total of  (i) 4  (ii) at most 4  (iii) atleast 4

$$\left(\mathrm{1}\right)\:\mathrm{In}\:\mathrm{a}\:\mathrm{single}\:\mathrm{throw}\:\mathrm{of}\:\mathrm{three}\: \\ $$$$\mathrm{dice},\mathrm{find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{of}\:\mathrm{getting} \\ $$$$\mathrm{a}\:\mathrm{total}\:\mathrm{of} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{4} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{at}\:\mathrm{most}\:\mathrm{4} \\ $$$$\left(\mathrm{iii}\right)\:\mathrm{atleast}\:\mathrm{4} \\ $$

Commented by prakash jain last updated on 11/Dec/17

total number of outcomes=6×6×6=216  4: total number of favorable outcomes  1+2+1  1+1+2  2+1+1  3  probability of getting a 4=(3/(216))  (ii) at most 4 (3 and 4)  1+1+1=3  probability of getting at most 4=(4/(216))  (iii) at least 4.  there is only  1 unfavorable outcome  1+1+1=3  probability=1−(1/(216))=((215)/(216))

$$\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{outcomes}=\mathrm{6}×\mathrm{6}×\mathrm{6}=\mathrm{216} \\ $$$$\mathrm{4}:\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{favorable}\:\mathrm{outcomes} \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{1} \\ $$$$\mathrm{1}+\mathrm{1}+\mathrm{2} \\ $$$$\mathrm{2}+\mathrm{1}+\mathrm{1} \\ $$$$\mathrm{3} \\ $$$$\mathrm{probability}\:\mathrm{of}\:\mathrm{getting}\:\mathrm{a}\:\mathrm{4}=\frac{\mathrm{3}}{\mathrm{216}} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{at}\:\mathrm{most}\:\mathrm{4}\:\left(\mathrm{3}\:\mathrm{and}\:\mathrm{4}\right) \\ $$$$\mathrm{1}+\mathrm{1}+\mathrm{1}=\mathrm{3} \\ $$$$\mathrm{probability}\:\mathrm{of}\:\mathrm{getting}\:\mathrm{at}\:\mathrm{most}\:\mathrm{4}=\frac{\mathrm{4}}{\mathrm{216}} \\ $$$$\left(\mathrm{iii}\right)\:\mathrm{at}\:\mathrm{least}\:\mathrm{4}. \\ $$$$\mathrm{there}\:\mathrm{is}\:\mathrm{only}\:\:\mathrm{1}\:\mathrm{unfavorable}\:\mathrm{outcome} \\ $$$$\mathrm{1}+\mathrm{1}+\mathrm{1}=\mathrm{3} \\ $$$$\mathrm{probability}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{216}}=\frac{\mathrm{215}}{\mathrm{216}} \\ $$

Commented by Rasheed.Sindhi last updated on 11/Dec/17

Salute to my math-guru!

$$\mathrm{Salute}\:\mathrm{to}\:\mathrm{my}\:\mathrm{math}-\mathrm{guru}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com