Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 24569 by ajfour last updated on 21/Nov/17

Commented by ajfour last updated on 21/Nov/17

In a gravity free cubical box, a  ball bounces elastically. If it be  projected from origin O towards  A(4, 13, 16), a point on the roof  plane then find the second and  third bounce points B, C .  The edge length of the cube is  16 units.

$${In}\:{a}\:{gravity}\:{free}\:{cubical}\:{box},\:{a} \\ $$$${ball}\:{bounces}\:{elastically}.\:{If}\:{it}\:{be} \\ $$$${projected}\:{from}\:{origin}\:{O}\:{towards} \\ $$$${A}\left(\mathrm{4},\:\mathrm{13},\:\mathrm{16}\right),\:{a}\:{point}\:{on}\:{the}\:{roof} \\ $$$${plane}\:{then}\:{find}\:{the}\:{second}\:{and} \\ $$$${third}\:{bounce}\:{points}\:\boldsymbol{{B}},\:\boldsymbol{{C}}\:. \\ $$$${The}\:{edge}\:{length}\:{of}\:{the}\:{cube}\:{is} \\ $$$$\mathrm{16}\:{units}. \\ $$

Commented by ajfour last updated on 22/Nov/17

correct. thanks . point C(8,6,0) .

$${correct}.\:{thanks}\:.\:{point}\:{C}\left(\mathrm{8},\mathrm{6},\mathrm{0}\right)\:. \\ $$

Commented by jota last updated on 21/Nov/17

B esta en el plano y=((13)/4)x   ⇒16=((13)/4)x_B   En ese plano por semejanza de   triangulos  ((16)/(13))=((16−z_B )/3)  ⇒B(((64)/(13))   16  12(4/(13)))

$${B}\:{esta}\:{en}\:{el}\:{plano}\:{y}=\frac{\mathrm{13}}{\mathrm{4}}{x} \\ $$$$\:\Rightarrow\mathrm{16}=\frac{\mathrm{13}}{\mathrm{4}}{x}_{{B}} \\ $$$${En}\:{ese}\:{plano}\:{por}\:{semejanza}\:{de} \\ $$$$\:{triangulos} \\ $$$$\frac{\mathrm{16}}{\mathrm{13}}=\frac{\mathrm{16}−{z}_{{B}} }{\mathrm{3}} \\ $$$$\Rightarrow{B}\left(\frac{\mathrm{64}}{\mathrm{13}}\:\:\:\mathrm{16}\:\:\mathrm{12}\frac{\mathrm{4}}{\mathrm{13}}\right) \\ $$$$ \\ $$

Answered by mrW1 last updated on 22/Nov/17

A(4,13,16)  O′(0,0,32)    ((x_B −x_A )/(x_A −x_(O′) ))=((y_B −y_A )/(y_A −y_(O′) ))=((z_B −z_A )/(z_A −z_(O′) ))  ((x_B −4)/(4−0))=((16−13)/(13−0))=((z_B −16)/(16−32))  ⇒x_B =4+4×(3/(13))=((64)/(13))  ⇒y_B =16  ⇒z_B =16−16×(3/(13))=((160)/(13))    A′(4,19,16)  ((x_C −x_B )/(x_B −x_(A′) ))=((y_C −y_B )/(y_B −y_(A′) ))=((z_C −z_B )/(z_B −z_(A′) ))  ((x_C −((64)/(13)))/(((64)/(13))−4))=((y_C −16)/(16−19))=((0−((160)/(13)))/(((160)/(13))−16))  ⇒x_C =((64)/(13))+((12)/(13))×(((10)/3))=((104)/(13))=8  ⇒y_C =16−3×((10)/3)=6  ⇒z_C =0    ⇒B(((64)/(13)),16,((160)/(13)))  ⇒C(8,6,0)

$${A}\left(\mathrm{4},\mathrm{13},\mathrm{16}\right) \\ $$$${O}'\left(\mathrm{0},\mathrm{0},\mathrm{32}\right) \\ $$$$ \\ $$$$\frac{{x}_{{B}} −{x}_{{A}} }{{x}_{{A}} −{x}_{{O}'} }=\frac{{y}_{{B}} −{y}_{{A}} }{{y}_{{A}} −{y}_{{O}'} }=\frac{{z}_{{B}} −{z}_{{A}} }{{z}_{{A}} −{z}_{{O}'} } \\ $$$$\frac{{x}_{{B}} −\mathrm{4}}{\mathrm{4}−\mathrm{0}}=\frac{\mathrm{16}−\mathrm{13}}{\mathrm{13}−\mathrm{0}}=\frac{{z}_{{B}} −\mathrm{16}}{\mathrm{16}−\mathrm{32}} \\ $$$$\Rightarrow{x}_{{B}} =\mathrm{4}+\mathrm{4}×\frac{\mathrm{3}}{\mathrm{13}}=\frac{\mathrm{64}}{\mathrm{13}} \\ $$$$\Rightarrow{y}_{{B}} =\mathrm{16} \\ $$$$\Rightarrow{z}_{{B}} =\mathrm{16}−\mathrm{16}×\frac{\mathrm{3}}{\mathrm{13}}=\frac{\mathrm{160}}{\mathrm{13}} \\ $$$$ \\ $$$${A}'\left(\mathrm{4},\mathrm{19},\mathrm{16}\right) \\ $$$$\frac{{x}_{{C}} −{x}_{{B}} }{{x}_{{B}} −{x}_{{A}'} }=\frac{{y}_{{C}} −{y}_{{B}} }{{y}_{{B}} −{y}_{{A}'} }=\frac{{z}_{{C}} −{z}_{{B}} }{{z}_{{B}} −{z}_{{A}'} } \\ $$$$\frac{{x}_{{C}} −\frac{\mathrm{64}}{\mathrm{13}}}{\frac{\mathrm{64}}{\mathrm{13}}−\mathrm{4}}=\frac{{y}_{{C}} −\mathrm{16}}{\mathrm{16}−\mathrm{19}}=\frac{\mathrm{0}−\frac{\mathrm{160}}{\mathrm{13}}}{\frac{\mathrm{160}}{\mathrm{13}}−\mathrm{16}} \\ $$$$\Rightarrow{x}_{{C}} =\frac{\mathrm{64}}{\mathrm{13}}+\frac{\mathrm{12}}{\mathrm{13}}×\left(\frac{\mathrm{10}}{\mathrm{3}}\right)=\frac{\mathrm{104}}{\mathrm{13}}=\mathrm{8} \\ $$$$\Rightarrow{y}_{{C}} =\mathrm{16}−\mathrm{3}×\frac{\mathrm{10}}{\mathrm{3}}=\mathrm{6} \\ $$$$\Rightarrow{z}_{{C}} =\mathrm{0} \\ $$$$ \\ $$$$\Rightarrow{B}\left(\frac{\mathrm{64}}{\mathrm{13}},\mathrm{16},\frac{\mathrm{160}}{\mathrm{13}}\right) \\ $$$$\Rightarrow{C}\left(\mathrm{8},\mathrm{6},\mathrm{0}\right) \\ $$

Commented by ajfour last updated on 22/Nov/17

thank you sir !

$${thank}\:{you}\:{sir}\:! \\ $$

Commented by mrW1 last updated on 22/Nov/17

Related question: which point(s) A  on the roof plane can be selected  such that C=O?

$${Related}\:{question}:\:{which}\:{point}\left({s}\right)\:{A} \\ $$$${on}\:{the}\:{roof}\:{plane}\:{can}\:{be}\:{selected} \\ $$$${such}\:{that}\:\boldsymbol{{C}}=\boldsymbol{{O}}? \\ $$

Commented by mrW1 last updated on 23/Nov/17

I think no such a point A exists  so that C=O.

$${I}\:{think}\:{no}\:{such}\:{a}\:{point}\:{A}\:{exists} \\ $$$${so}\:{that}\:\boldsymbol{{C}}=\boldsymbol{{O}}. \\ $$

Commented by ajfour last updated on 22/Nov/17

(8+4(√2) , 8+4(√2) , 16) .  Is it ?  But anyway point B will be on  the vertical edge: x=16, y=16  God knows if it will reach O !

$$\left(\mathrm{8}+\mathrm{4}\sqrt{\mathrm{2}}\:,\:\mathrm{8}+\mathrm{4}\sqrt{\mathrm{2}}\:,\:\mathrm{16}\right)\:.\:\:{Is}\:{it}\:? \\ $$$${But}\:{anyway}\:{point}\:{B}\:{will}\:{be}\:{on} \\ $$$${the}\:{vertical}\:{edge}:\:{x}=\mathrm{16},\:{y}=\mathrm{16} \\ $$$${God}\:{knows}\:{if}\:{it}\:{will}\:{reach}\:{O}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com