Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 24548 by Physics lover last updated on 20/Nov/17

prove that   Σ_(n=1) ^r {n(n−(r/2))^2 }= r∙Σ_(n=1) ^(r/2) n^2    where   r = 2k ; k ∈ N

$${prove}\:{that}\: \\ $$$$\underset{{n}=\mathrm{1}} {\overset{{r}} {\sum}}\left\{{n}\left({n}−\frac{{r}}{\mathrm{2}}\right)^{\mathrm{2}} \right\}=\:{r}\centerdot\underset{{n}=\mathrm{1}} {\overset{{r}/\mathrm{2}} {\sum}}{n}^{\mathrm{2}} \\ $$$$\:{where}\:\:\:{r}\:=\:\mathrm{2}{k}\:;\:{k}\:\in\:\mathbb{N} \\ $$

Answered by jota last updated on 21/Nov/17

    Σ_1 ^(2k) n(n−k)^2 =   Σ(n^3 −2kn^2 +k^2 )=(((2k)^2 (2k+1)^2 )/4)   −2k((2k(2k+1)(4k+1))/6)+k^2 ((2k(2k+1))/2)=   =2k((k(k+1)(2k+1))/6)=rΣ_1 ^(r/2=k) n^2

$$\: \\ $$$$\:\underset{\mathrm{1}} {\overset{\mathrm{2}{k}} {\sum}}{n}\left({n}−{k}\right)^{\mathrm{2}} = \\ $$$$\:\Sigma\left({n}^{\mathrm{3}} −\mathrm{2}{kn}^{\mathrm{2}} +{k}^{\mathrm{2}} \right)=\frac{\left(\mathrm{2}{k}\right)^{\mathrm{2}} \left(\mathrm{2}{k}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\:−\mathrm{2}{k}\frac{\mathrm{2}{k}\left(\mathrm{2}{k}+\mathrm{1}\right)\left(\mathrm{4}{k}+\mathrm{1}\right)}{\mathrm{6}}+{k}^{\mathrm{2}} \frac{\mathrm{2}{k}\left(\mathrm{2}{k}+\mathrm{1}\right)}{\mathrm{2}}= \\ $$$$\:=\mathrm{2}{k}\frac{{k}\left({k}+\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{1}\right)}{\mathrm{6}}={r}\underset{\mathrm{1}} {\overset{{r}/\mathrm{2}={k}} {\sum}}{n}^{\mathrm{2}} \\ $$$$ \\ $$

Commented by Physics lover last updated on 21/Nov/17

thank you so much

$${thank}\:{you}\:{so}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com