Question and Answers Forum

All Questions      Topic List

Logic Questions

Previous in All Question      Next in All Question      

Previous in Logic      Next in Logic      

Question Number 22872 by Physics lover last updated on 23/Oct/17

Commented by ajfour last updated on 23/Oct/17

Commented by ajfour last updated on 24/Oct/17

I_(disc) =((MR^2 )/2)  ⇒ M=((2I)/R^2 ) =((2×0.16)/((1/25))) kg = 8kg  The acc. of rope on left of disc  is = a =(a/2)+αR  ⇒      𝛂R=(a/2) ....(i)      T_2 −mg=ma   ...(ii)      (T_1 −T_2 )R=I𝛂    ...(iii)       Mg−T_1 −T_2 =((Ma)/2)  ...(iv)  From (iii):  ⇒  T_1 =T_2 +((IαR)/R^2 ) =T_2 +((Ia)/(2R^2 ))  from (iv):  Mg−T_2 −T_2 −((Ia)/(2R^2 )) =((Ma)/2)  ⇒   Mg−2mg−2ma−((Ia)/(2R^2 ))=((Ma)/2)  ⇒  a=(((M−2m)g)/(((M/2)+2m+(I/(2R^2 )))))          =(((8−2)(10))/((4+2+2))) m/s^2  =((15)/2)m/s^2   ⇒   ((30)/x) = ((15)/2)  or   x=4 .

$${I}_{{disc}} =\frac{{MR}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Rightarrow\:{M}=\frac{\mathrm{2}{I}}{{R}^{\mathrm{2}} }\:=\frac{\mathrm{2}×\mathrm{0}.\mathrm{16}}{\left(\mathrm{1}/\mathrm{25}\right)}\:{kg}\:=\:\mathrm{8}{kg} \\ $$$${The}\:{acc}.\:{of}\:{rope}\:{on}\:{left}\:{of}\:{disc} \\ $$$${is}\:=\:{a}\:=\frac{{a}}{\mathrm{2}}+\alpha{R} \\ $$$$\Rightarrow\:\:\:\:\:\:\boldsymbol{\alpha{R}}=\frac{\boldsymbol{{a}}}{\mathrm{2}}\:....\left({i}\right) \\ $$$$\:\:\:\:\boldsymbol{{T}}_{\mathrm{2}} −\boldsymbol{{mg}}=\boldsymbol{{ma}}\:\:\:...\left({ii}\right) \\ $$$$\:\:\:\:\left(\boldsymbol{{T}}_{\mathrm{1}} −\boldsymbol{{T}}_{\mathrm{2}} \right)\boldsymbol{{R}}=\boldsymbol{{I}\alpha}\:\:\:\:...\left({iii}\right) \\ $$$$\:\:\:\:\:\boldsymbol{{Mg}}−\boldsymbol{{T}}_{\mathrm{1}} −\boldsymbol{{T}}_{\mathrm{2}} =\frac{\boldsymbol{{Ma}}}{\mathrm{2}}\:\:...\left({iv}\right) \\ $$$${From}\:\left({iii}\right): \\ $$$$\Rightarrow\:\:{T}_{\mathrm{1}} ={T}_{\mathrm{2}} +\frac{{I}\alpha{R}}{{R}^{\mathrm{2}} }\:={T}_{\mathrm{2}} +\frac{{Ia}}{\mathrm{2}{R}^{\mathrm{2}} } \\ $$$${from}\:\left({iv}\right): \\ $$$${Mg}−{T}_{\mathrm{2}} −{T}_{\mathrm{2}} −\frac{{Ia}}{\mathrm{2}{R}^{\mathrm{2}} }\:=\frac{{Ma}}{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:{Mg}−\mathrm{2}{mg}−\mathrm{2}{ma}−\frac{{Ia}}{\mathrm{2}{R}^{\mathrm{2}} }=\frac{{Ma}}{\mathrm{2}} \\ $$$$\Rightarrow\:\:\boldsymbol{{a}}=\frac{\left(\boldsymbol{{M}}−\mathrm{2}\boldsymbol{{m}}\right)\boldsymbol{{g}}}{\left(\frac{\boldsymbol{{M}}}{\mathrm{2}}+\mathrm{2}\boldsymbol{{m}}+\frac{{I}}{\mathrm{2}\boldsymbol{{R}}^{\mathrm{2}} }\right)} \\ $$$$\:\:\:\:\:\:\:\:=\frac{\left(\mathrm{8}−\mathrm{2}\right)\left(\mathrm{10}\right)}{\left(\mathrm{4}+\mathrm{2}+\mathrm{2}\right)}\:{m}/{s}^{\mathrm{2}} \:=\frac{\mathrm{15}}{\mathrm{2}}\boldsymbol{{m}}/\boldsymbol{{s}}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\frac{\mathrm{30}}{{x}}\:=\:\frac{\mathrm{15}}{\mathrm{2}}\:\:{or}\:\:\:\boldsymbol{{x}}=\mathrm{4}\:. \\ $$$$ \\ $$

Commented by Physics lover last updated on 24/Oct/17

but the answer given is 4.  ???

$${but}\:{the}\:{answer}\:{given}\:{is}\:\mathrm{4}. \\ $$$$??? \\ $$

Commented by Physics lover last updated on 24/Oct/17

i hav got it.Anyways,thank you sir.  Without ur hints i cudnt hav solved  it.

$${i}\:{hav}\:{got}\:{it}.{Anyways},{thank}\:{you}\:{sir}. \\ $$$${Without}\:{ur}\:{hints}\:{i}\:{cudnt}\:{hav}\:{solved} \\ $$$${it}. \\ $$

Answered by Physics lover last updated on 24/Oct/17

Translation:  T_(2 ) = 1(a+g)  ...i  &  8g −T_1 −T_2  =8 ((a/2))  ⇒T_(1 ) = 7g − 5a ...ii  Rotation:  T_1 R−T_2 R = I α  ⇒T_1 R^2 −T_2 R^2  =IαR=I((a/2))  ⇒T_(1 ) − T_(2 ) = 2a ...iii  substituting T_(2 ) from eq    ...i  and T_1  from eq ...ii  in eq ...iii    ⇒7g−5a−a−g=2a  ⇒((6g)/(8 )) = a = ((6(10))/8) = ((30)/4)  ⇒ x = 4

$${Translation}: \\ $$$${T}_{\mathrm{2}\:} =\:\mathrm{1}\left({a}+{g}\right)\:\:...{i} \\ $$$$\& \\ $$$$\mathrm{8}{g}\:−{T}_{\mathrm{1}} −{T}_{\mathrm{2}} \:=\mathrm{8}\:\left(\frac{{a}}{\mathrm{2}}\right) \\ $$$$\Rightarrow{T}_{\mathrm{1}\:} =\:\mathrm{7}{g}\:−\:\mathrm{5}{a}\:...{ii} \\ $$$${Rotation}: \\ $$$${T}_{\mathrm{1}} {R}−{T}_{\mathrm{2}} {R}\:=\:{I}\:\alpha \\ $$$$\Rightarrow{T}_{\mathrm{1}} {R}^{\mathrm{2}} −{T}_{\mathrm{2}} {R}^{\mathrm{2}} \:={I}\alpha{R}={I}\left(\frac{{a}}{\mathrm{2}}\right) \\ $$$$\Rightarrow{T}_{\mathrm{1}\:} −\:{T}_{\mathrm{2}\:} =\:\mathrm{2}{a}\:...{iii} \\ $$$${substituting}\:{T}_{\mathrm{2}\:} {from}\:{eq}\:\:\:\:...{i} \\ $$$${and}\:{T}_{\mathrm{1}} \:{from}\:{eq}\:...{ii}\:\:{in}\:{eq}\:...{iii} \\ $$$$ \\ $$$$\Rightarrow\mathrm{7}{g}−\mathrm{5}{a}−{a}−{g}=\mathrm{2}{a} \\ $$$$\Rightarrow\frac{\mathrm{6}{g}}{\mathrm{8}\:}\:=\:{a}\:=\:\frac{\mathrm{6}\left(\mathrm{10}\right)}{\mathrm{8}}\:=\:\frac{\mathrm{30}}{\mathrm{4}} \\ $$$$\Rightarrow\:{x}\:=\:\mathrm{4} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com