Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 22768 by math solver last updated on 22/Oct/17

Commented by math solver last updated on 22/Oct/17

find the sum of infinite terms of   the series ..

$${find}\:{the}\:{sum}\:{of}\:{infinite}\:{terms}\:{of}\: \\ $$$${the}\:{series}\:.. \\ $$

Commented by math solver last updated on 22/Oct/17

someone solve this one plz .

$${someone}\:{solve}\:{this}\:{one}\:{plz}\:. \\ $$

Answered by $@ty@m last updated on 22/Oct/17

N^r of t_n =2n+1  D^r of t_n =1^2 +2^2 +...+n^2                   =Σn^2 =((n(n+1)(2n+1))/6)  (you can find its proof in your textbook)    ∴ t_n =((6(2n+1))/(n(n+1)(2n+1)))  =(6/(n(n+1)))  =6((1/n)−(1/(n+1)))  ∴S_n =6{(1−(1/2))+((1/2)−(1/3))+.....+((1/n)−(1/(n+1)))}  =6(1−(1/(n+1)))  =((6n)/(n+1))  S_∞ =lim_(n→∞)    ((6n)/(n+1))  S_∞ =lim_(n→∞)    (6/(1+(1/n)))=6 Ans.

$${N}^{{r}} {of}\:{t}_{{n}} =\mathrm{2}{n}+\mathrm{1} \\ $$$${D}^{{r}} {of}\:{t}_{{n}} =\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +...+{n}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\Sigma{n}^{\mathrm{2}} =\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$$$\left({you}\:{can}\:{find}\:{its}\:{proof}\:{in}\:{your}\:{textbook}\right) \\ $$$$ \\ $$$$\therefore\:{t}_{{n}} =\frac{\mathrm{6}\left(\mathrm{2}{n}+\mathrm{1}\right)}{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{6}}{{n}\left({n}+\mathrm{1}\right)} \\ $$$$=\mathrm{6}\left(\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right) \\ $$$$\therefore{S}_{{n}} =\mathrm{6}\left\{\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)+\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}\right)+.....+\left(\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right)\right\} \\ $$$$=\mathrm{6}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right) \\ $$$$=\frac{\mathrm{6}{n}}{{n}+\mathrm{1}} \\ $$$${S}_{\infty} =\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\:\:\frac{\mathrm{6}{n}}{{n}+\mathrm{1}} \\ $$$${S}_{\infty} =\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\:\:\frac{\mathrm{6}}{\mathrm{1}+\frac{\mathrm{1}}{{n}}}=\mathrm{6}\:{Ans}. \\ $$

Commented by math solver last updated on 22/Oct/17

how you write t_n  directly ?  plz tell steps ?? i always have problem  finding that......

$${how}\:{you}\:{write}\:{t}_{{n}} \:{directly}\:? \\ $$$${plz}\:{tell}\:{steps}\:??\:{i}\:{always}\:{have}\:{problem} \\ $$$${finding}\:{that}...... \\ $$

Commented by $@ty@m last updated on 22/Oct/17

Is it clear now?

$${Is}\:{it}\:{clear}\:{now}? \\ $$

Commented by math solver last updated on 22/Oct/17

yes  , thanks bro!

$${yes}\:\:,\:{thanks}\:{bro}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com