Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 22079 by Tinkutara last updated on 10/Oct/17

Let ABC be a triangle and h_a  the  altitude through A. Prove that  (b + c)^2  ≥ a^2  + 4h_a ^2 .  (As usual a, b, c denote the sides BC,  CA, AB respectively.)

$$\mathrm{Let}\:{ABC}\:\mathrm{be}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{and}\:{h}_{{a}} \:\mathrm{the} \\ $$$$\mathrm{altitude}\:\mathrm{through}\:{A}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\left({b}\:+\:{c}\right)^{\mathrm{2}} \:\geqslant\:{a}^{\mathrm{2}} \:+\:\mathrm{4}{h}_{{a}} ^{\mathrm{2}} . \\ $$$$\left(\mathrm{As}\:\mathrm{usual}\:{a},\:{b},\:{c}\:\mathrm{denote}\:\mathrm{the}\:\mathrm{sides}\:{BC},\right. \\ $$$$\left.{CA},\:{AB}\:\mathrm{respectively}.\right) \\ $$

Commented by ajfour last updated on 11/Oct/17

solved. See Q.22116

$${solved}.\:{See}\:{Q}.\mathrm{22116} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com