Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 212992 by CrispyXYZ last updated on 28/Oct/24

a>0. b>0. a+b=2.  Find the minimum value of a^(√a) b^(√b) .

$${a}>\mathrm{0}.\:{b}>\mathrm{0}.\:{a}+{b}=\mathrm{2}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:{a}^{\sqrt{{a}}} {b}^{\sqrt{{b}}} . \\ $$

Answered by Ghisom last updated on 28/Oct/24

b=2−a  a^(√a) (2−a)^(√(2−a)) ; 0<a<2  since lim_(x→0)  x^(√x) =1 the minimum occurs at  the center of the interval ⇒  min (a^(√a) b^(√b) )=1 at a=b=1

$${b}=\mathrm{2}−{a} \\ $$$${a}^{\sqrt{{a}}} \left(\mathrm{2}−{a}\right)^{\sqrt{\mathrm{2}−{a}}} ;\:\mathrm{0}<{a}<\mathrm{2} \\ $$$$\mathrm{since}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{x}^{\sqrt{{x}}} =\mathrm{1}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{occurs}\:\mathrm{at} \\ $$$$\mathrm{the}\:\mathrm{center}\:\mathrm{of}\:\mathrm{the}\:\mathrm{interval}\:\Rightarrow \\ $$$$\mathrm{min}\:\left({a}^{\sqrt{{a}}} {b}^{\sqrt{{b}}} \right)=\mathrm{1}\:\mathrm{at}\:{a}={b}=\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com