Question Number 211184 by nothing48 last updated on 30/Aug/24 | ||
Answered by mm1342 last updated on 30/Aug/24 | ||
$${x}={sinu} \\ $$$$\Rightarrow\int{sin}^{\mathrm{3}} {udu}=\int\left(\mathrm{1}−{cos}^{\mathrm{2}} {u}\right){sinudu} \\ $$$$=−{cosu}+\frac{\mathrm{1}}{\mathrm{3}}{cos}^{\mathrm{3}} {u}+{c} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{3}−{cos}^{\mathrm{2}} {u}\right){cosu}+{c} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }+{c}\:\:\checkmark \\ $$$$ \\ $$ | ||
Answered by Frix last updated on 30/Aug/24 | ||
$$\int\frac{{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}\:\overset{{t}=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} {=}\:\int\left({t}^{\mathrm{2}} −\mathrm{1}\right){dt}=\frac{{t}^{\mathrm{3}} }{\mathrm{3}}−{t}= \\ $$$$=\left({t}^{\mathrm{2}} −\mathrm{3}\right)\frac{{t}}{\mathrm{3}}=−\left({x}^{\mathrm{2}} +\mathrm{2}\right)\frac{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{\mathrm{3}}+{C} \\ $$ | ||
Commented by mm1342 last updated on 30/Aug/24 | ||
$$\:\underbrace{\frown} \\ $$ | ||
Commented by Frix last updated on 30/Aug/24 | ||
Answered by MathematicalUser2357 last updated on 27/Sep/24 | ||
$$\int\frac{{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}\underset{{du}=−\mathrm{2}{xdx}} {\overset{{u}=\mathrm{1}−{x}^{\mathrm{2}} } {\Rightarrow}}−\int\frac{{u}−\mathrm{1}}{\mathrm{2}{u}}{du}=−\frac{\mathrm{1}}{\mathrm{2}}\int\left(\mathrm{1}−\frac{\mathrm{1}}{{u}}\right){du}=−\frac{\mathrm{1}}{\mathrm{2}}\left({u}−\mathrm{ln}\:{u}\right)+\mathrm{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({x}^{\mathrm{2}} +\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\right)+\mathrm{C} \\ $$ | ||
Commented by MathematicalUser2357 last updated on 27/Sep/24 | ||
$$\mathrm{I}\:\mathrm{can}\:\mathrm{use}\:\mathrm{the}\:\mathrm{chain}\:\mathrm{rule}\:\frac{{d}}{{dx}}{f}\left({g}\left({x}\right)\right)={f}'\left({g}\left({x}\right)\right){g}'\left({x}\right)\:\mathrm{for}\:\mathrm{quick}\:\mathrm{integration} \\ $$$$\divideontimes\:\int{f}'\left({g}\left({x}\right)\right){g}'\left({x}\right){dx}={f}\left({g}\left({x}\right)\right)+{C} \\ $$ | ||
Commented by Frix last updated on 27/Sep/24 | ||
$$\int\frac{{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}\:\overset{\left[{u}=\mathrm{1}−{x}^{\mathrm{2}} \right]} {=}\:\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{u}−\mathrm{1}}{\:\sqrt{{u}}}{du}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\left({u}^{\frac{\mathrm{1}}{\mathrm{2}}} −{u}^{−\frac{\mathrm{1}}{\mathrm{2}}} \right){du}=\frac{{u}^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{3}}−{u}^{\frac{\mathrm{1}}{\mathrm{2}}} =\frac{\left({u}−\mathrm{3}\right)\sqrt{{u}}}{\mathrm{3}}= \\ $$$$=−\frac{\left({x}^{\mathrm{2}} +\mathrm{2}\right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{\mathrm{3}}+{C} \\ $$ | ||