Question Number 211157 by RojaTaniya last updated on 30/Aug/24 | ||
Commented by Rasheed.Sindhi last updated on 30/Aug/24 | ||
$$\left({x},{y},{z}\right)=\left(\mathrm{1},\mathrm{0},\mathrm{0}\right),\left(\mathrm{0},\mathrm{1},\mathrm{0}\right),\left(\mathrm{0},\mathrm{0},\mathrm{1}\right) \\ $$ | ||
Answered by Rasheed.Sindhi last updated on 30/Aug/24 | ||
$$\begin{cases}{{x}+{y}+{z}=\mathrm{1}...\left({i}\right)}\\{{x}^{\mathrm{2}} {y}+{y}^{\mathrm{2}} {z}+{z}^{\mathrm{2}} {x}={xy}^{\mathrm{2}} +{yz}^{\mathrm{2}} +{zx}^{\mathrm{2}} ...\left({ii}\right)}\\{{x}^{\mathrm{3}} +{y}^{\mathrm{2}} +{z}={y}^{\mathrm{3}} +{z}^{\mathrm{2}} +{x}...\left({iii}\right)}\end{cases} \\ $$$${Assuming}\:{x},{y},{z}>\mathrm{0} \\ $$$$\left({ii}\right)\Rightarrow{xy}\left({x}−{y}\right)+{yz}\left({y}−{z}\right)+{zx}\left({z}−{x}\right)=\mathrm{0} \\ $$$${xy}\left({x}−{y}\right)=\mathrm{0}\wedge{yz}\left({y}−{z}\right)=\mathrm{0}\wedge{zx}\left({z}−{x}\right)=\mathrm{0} \\ $$$${x}−{y}=\mathrm{0}\wedge{y}−{z}=\mathrm{0}\wedge{z}−{x}=\mathrm{0} \\ $$$$\Rightarrow{x}={y}={z} \\ $$$$\left({i}\right)\Rightarrow{x}={y}={z}=\mathrm{1}/\mathrm{3} \\ $$ | ||