Question Number 21067 by youssoufab last updated on 11/Sep/17 | ||
$$\forall{n}\in\mathbb{N},\:{prove}\:\mathrm{9}\mid\left[{n}^{\mathrm{3}} +\left({n}+\mathrm{1}\right)^{\mathrm{3}} +\left({n}+\mathrm{2}\right)^{\mathrm{3}} \right] \\ $$ | ||
Answered by dioph last updated on 12/Sep/17 | ||
$${n}^{\mathrm{3}} +\left({n}+\mathrm{1}\right)^{\mathrm{3}} +\left({n}+\mathrm{2}\right)^{\mathrm{3}} = \\ $$$$={n}^{\mathrm{3}} +{n}^{\mathrm{3}} +\mathrm{3}{n}^{\mathrm{2}} +\mathrm{3}{n}+\mathrm{1}+{n}^{\mathrm{3}} +\mathrm{6}{n}^{\mathrm{2}} +\mathrm{12}{n}+\mathrm{8}= \\ $$$$=\mathrm{3}{n}^{\mathrm{3}} +\mathrm{9}{n}^{\mathrm{2}} +\mathrm{15}{n}+\mathrm{9} \\ $$$$=\mathrm{3}{n}\left({n}^{\mathrm{2}} +\mathrm{5}\right)+\mathrm{9}\left({n}^{\mathrm{2}} +\mathrm{1}\right)\:=\:{x} \\ $$$$\mathrm{Case}\:\mathrm{1}:\:\mathrm{3}\:\mid\:{n} \\ $$$$\Rightarrow\:{n}=\mathrm{3}{k} \\ $$$$\Rightarrow\:{x}=\mathrm{9}{k}\left(\mathrm{9}{k}^{\mathrm{2}} +\mathrm{5}\right)+\mathrm{9}\left(\mathrm{9}{k}^{\mathrm{2}} +\mathrm{1}\right) \\ $$$$\Rightarrow\:\mathrm{9}\:\mid\:{x} \\ $$$$\mathrm{Case}\:\mathrm{2}:\:\mathrm{3}\:\nmid\:{n} \\ $$$$\Rightarrow\:{n}^{\mathrm{2}} +\mathrm{5}\:\equiv\:{n}^{\mathrm{2}} −\mathrm{1}\:\equiv\:\left({n}+\mathrm{1}\right)\left({n}−\mathrm{1}\right) \\ $$$$\equiv\:\mathrm{0}\:\left(\mathrm{mod}\:\mathrm{3}\right) \\ $$$$\Rightarrow\:{n}^{\mathrm{2}} +\mathrm{5}\:=\:\mathrm{3}{h} \\ $$$$\Rightarrow\:{x}=\mathrm{9}{nh}+\mathrm{9}\left({n}^{\mathrm{2}} +\mathrm{1}\right) \\ $$$$\Rightarrow\:\mathrm{9}\:\mid\:{x} \\ $$$$\blacksquare \\ $$ | ||
Commented by youssoufab last updated on 14/Sep/17 | ||
$${thanks}\:{for}\:{help} \\ $$ | ||
Answered by mrW1 last updated on 12/Sep/17 | ||
$$\mathrm{let}\:\mathrm{m}=\mathrm{n}+\mathrm{1} \\ $$$$\Rightarrow\left(\mathrm{m}−\mathrm{1}\right)^{\mathrm{3}} +\mathrm{m}^{\mathrm{3}} +\left(\mathrm{m}+\mathrm{1}\right)^{\mathrm{3}} \\ $$$$=\mathrm{m}^{\mathrm{3}} −\mathrm{3m}^{\mathrm{2}} +\mathrm{3m}−\mathrm{1}+\mathrm{m}^{\mathrm{3}} +\mathrm{m}^{\mathrm{3}} +\mathrm{3m}^{\mathrm{2}} +\mathrm{3m}+\mathrm{1} \\ $$$$=\mathrm{3m}^{\mathrm{3}} +\mathrm{6m} \\ $$$$=\mathrm{3m}\left(\mathrm{m}^{\mathrm{2}} +\mathrm{2}\right) \\ $$$$ \\ $$$$\mathrm{if}\:\mathrm{m}=\mathrm{3k}: \\ $$$$\mathrm{3m}\left(\mathrm{m}^{\mathrm{2}} +\mathrm{2}\right)=\mathrm{9k}\left(\mathrm{9k}^{\mathrm{2}} +\mathrm{2}\right)\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{9}\right) \\ $$$$ \\ $$$$\mathrm{if}\:\mathrm{m}=\mathrm{3k}\pm\mathrm{1}: \\ $$$$\mathrm{3m}\left(\mathrm{m}^{\mathrm{2}} +\mathrm{2}\right)=\mathrm{3}\left(\mathrm{3k}\pm\mathrm{1}\right)\left(\mathrm{9k}^{\mathrm{2}} \pm\mathrm{6k}+\mathrm{1}+\mathrm{2}\right) \\ $$$$=\mathrm{9}\left(\mathrm{3k}\pm\mathrm{1}\right)\left(\mathrm{3k}^{\mathrm{2}} \pm\mathrm{2k}+\mathrm{1}\right)\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{9}\right) \\ $$ | ||