Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 210524 by hardmath last updated on 11/Aug/24

Commented by hardmath last updated on 11/Aug/24

r = ?

$$\boldsymbol{\mathrm{r}}\:=\:? \\ $$

Answered by mr W last updated on 12/Aug/24

Commented by mr W last updated on 12/Aug/24

α=sin^(−1) (r/a)  β=sin^(−1) (r/b)  γ=sin^(−1) (r/c)  δ=sin^(−1) (r/d)  2α+2γ=π ⇒α+γ=(π/2) ⇒sin α=cos γ  ⇒(r/a)=(√(1−((r/c))^2 ))  ⇒(r^2 /a^2 )=1−(r^2 /c^2 )  ⇒r=((ac)/( (√(a^2 +c^2 ))))  or  ⇒r=((bd)/( (√(b^2 +d^2 ))))

$$\alpha=\mathrm{sin}^{−\mathrm{1}} \frac{{r}}{{a}} \\ $$$$\beta=\mathrm{sin}^{−\mathrm{1}} \frac{{r}}{{b}} \\ $$$$\gamma=\mathrm{sin}^{−\mathrm{1}} \frac{{r}}{{c}} \\ $$$$\delta=\mathrm{sin}^{−\mathrm{1}} \frac{{r}}{{d}} \\ $$$$\mathrm{2}\alpha+\mathrm{2}\gamma=\pi\:\Rightarrow\alpha+\gamma=\frac{\pi}{\mathrm{2}}\:\Rightarrow\mathrm{sin}\:\alpha=\mathrm{cos}\:\gamma \\ $$$$\Rightarrow\frac{{r}}{{a}}=\sqrt{\mathrm{1}−\left(\frac{{r}}{{c}}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{r}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\mathrm{1}−\frac{{r}^{\mathrm{2}} }{{c}^{\mathrm{2}} } \\ $$$$\Rightarrow{r}=\frac{{ac}}{\:\sqrt{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} }} \\ $$$${or} \\ $$$$\Rightarrow{r}=\frac{{bd}}{\:\sqrt{{b}^{\mathrm{2}} +{d}^{\mathrm{2}} }} \\ $$

Commented by hardmath last updated on 12/Aug/24

thank you dear professor cool

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor}\:\mathrm{cool} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com