Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 209880 by mnjuly1970 last updated on 24/Jul/24

Answered by mahdipoor last updated on 25/Jul/24

get :   a=cte  and   A,B,C  is variable  f(A,B,C)=((√(cosA))/a)+((√(cosB))/b)+((√(cosC))/c)=  (1/a)((√(cosA))+sinA(((√(cosB))/(sinB))+((√(cosC))/(sinC))))  g(A,B,C)=A+B+C=180  ⇒(∂f/∂x_i )=λ(∂g/∂x_i )⇒f_(min) =f(60,60,60)=((3(√(cos60)))/a)=((2.12)/a)  ,,  h(A,B,C)=(3/(a+b+c))=((3sinA)/(a(sinA+sinB+sinC)))  ⇒(∂h/∂x_i )=λ(∂g/∂x_i )⇒h_(max) =f(90,90,0)=((1.5)/a)  ,,  f ≥ ((2.12)/a) > ((1.5)/a) ≥ h ⇒f ≥ h ⇒  ((√(cosA))/a)+((√(cosB))/b)+((√(cosC))/c)>(3/(a+b+c))

$${get}\::\:\:\:{a}={cte}\:\:{and}\:\:\:{A},{B},{C}\:\:{is}\:{variable} \\ $$$${f}\left({A},{B},{C}\right)=\frac{\sqrt{{cosA}}}{{a}}+\frac{\sqrt{{cosB}}}{{b}}+\frac{\sqrt{{cosC}}}{{c}}= \\ $$$$\frac{\mathrm{1}}{{a}}\left(\sqrt{{cosA}}+{sinA}\left(\frac{\sqrt{{cosB}}}{{sinB}}+\frac{\sqrt{{cosC}}}{{sinC}}\right)\right) \\ $$$${g}\left({A},{B},{C}\right)={A}+{B}+{C}=\mathrm{180} \\ $$$$\Rightarrow\frac{\partial{f}}{\partial{x}_{{i}} }=\lambda\frac{\partial{g}}{\partial{x}_{{i}} }\Rightarrow{f}_{{min}} ={f}\left(\mathrm{60},\mathrm{60},\mathrm{60}\right)=\frac{\mathrm{3}\sqrt{{cos}\mathrm{60}}}{{a}}=\frac{\mathrm{2}.\mathrm{12}}{{a}} \\ $$$$,, \\ $$$${h}\left({A},{B},{C}\right)=\frac{\mathrm{3}}{{a}+{b}+{c}}=\frac{\mathrm{3}{sinA}}{{a}\left({sinA}+{sinB}+{sinC}\right)} \\ $$$$\Rightarrow\frac{\partial{h}}{\partial{x}_{{i}} }=\lambda\frac{\partial{g}}{\partial{x}_{{i}} }\Rightarrow{h}_{{max}} ={f}\left(\mathrm{90},\mathrm{90},\mathrm{0}\right)=\frac{\mathrm{1}.\mathrm{5}}{{a}} \\ $$$$,, \\ $$$${f}\:\geqslant\:\frac{\mathrm{2}.\mathrm{12}}{{a}}\:>\:\frac{\mathrm{1}.\mathrm{5}}{{a}}\:\geqslant\:{h}\:\Rightarrow{f}\:\geqslant\:{h}\:\Rightarrow \\ $$$$\frac{\sqrt{{cosA}}}{{a}}+\frac{\sqrt{{cosB}}}{{b}}+\frac{\sqrt{{cosC}}}{{c}}>\frac{\mathrm{3}}{{a}+{b}+{c}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com