Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 209030 by Spillover last updated on 30/Jun/24

Answered by aleks041103 last updated on 30/Jun/24

moment generating function is  m(t)=Σ_(k=0) ^∞ (m_k /(k!))t^k =m_0 +m_1 t+...  where m_k =∫_(−∞) ^∞  x^k f(x)dx are the moments  of the prob. density function f(x).  ⇒m(t)=(t/(1−t))=0+t+t^2 +t^3 +...=  =m_0 +m_1 t+...  ⇒m_0 =0  but this is impossible, since  m_0 =∫f(x)dx=1  for any PDF f(x).

$${moment}\:{generating}\:{function}\:{is} \\ $$$${m}\left({t}\right)=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{m}_{{k}} }{{k}!}{t}^{{k}} ={m}_{\mathrm{0}} +{m}_{\mathrm{1}} {t}+... \\ $$$${where}\:{m}_{{k}} =\underset{−\infty} {\overset{\infty} {\int}}\:{x}^{{k}} {f}\left({x}\right){dx}\:{are}\:{the}\:{moments} \\ $$$${of}\:{the}\:{prob}.\:{density}\:{function}\:{f}\left({x}\right). \\ $$$$\Rightarrow{m}\left({t}\right)=\frac{{t}}{\mathrm{1}−{t}}=\mathrm{0}+{t}+{t}^{\mathrm{2}} +{t}^{\mathrm{3}} +...= \\ $$$$={m}_{\mathrm{0}} +{m}_{\mathrm{1}} {t}+... \\ $$$$\Rightarrow{m}_{\mathrm{0}} =\mathrm{0} \\ $$$${but}\:{this}\:{is}\:{impossible},\:{since} \\ $$$${m}_{\mathrm{0}} =\int{f}\left({x}\right){dx}=\mathrm{1} \\ $$$${for}\:{any}\:{PDF}\:{f}\left({x}\right). \\ $$

Answered by Spillover last updated on 04/Jul/24

since  m(t)=(t/(1−t))  is not defined for the t=1  this implies that there is no probability distribution  associated with this moment generating function

$${since}\:\:{m}\left({t}\right)=\frac{{t}}{\mathrm{1}−{t}}\:\:{is}\:{not}\:{defined}\:{for}\:{the}\:{t}=\mathrm{1} \\ $$$${this}\:{implies}\:{that}\:{there}\:{is}\:{no}\:{probability}\:{distribution} \\ $$$${associated}\:{with}\:{this}\:{moment}\:{generating}\:{function} \\ $$

Commented by aleks041103 last updated on 04/Jul/24

may be.  by definition  m(t)=E[e^(xt) ]  m(0)=E[e^(x.0) ]=E[1]=1≠(0/(1−0))=0  but  m(1)=E[e^x ]  if this doesn′t exist then  ∫_(−∞) ^(+∞) e^x f(x)dx doesn′t converge.  This implies almost nothing or at least I  don′t see how this proves that f doesn′t exist.  For example f(x)=(1/2)e^(−x/2) H(x), where   H(x)=1 for x≥0 and H(x)=0 for x<0.  This is a pdf, since it is locally integrable  and obv. ∫_(−∞) ^∞ f(x)dx=∫_0 ^∞ e^(−(x/2)) d(x/2)=1  but ∫_(−∞) ^∞ e^x f(x)dx=∫_0 ^∞ e^((x/2)) d(x/2), which  diverges.

$${may}\:{be}. \\ $$$${by}\:{definition} \\ $$$${m}\left({t}\right)={E}\left[{e}^{{xt}} \right] \\ $$$${m}\left(\mathrm{0}\right)={E}\left[{e}^{{x}.\mathrm{0}} \right]={E}\left[\mathrm{1}\right]=\mathrm{1}\neq\frac{\mathrm{0}}{\mathrm{1}−\mathrm{0}}=\mathrm{0} \\ $$$${but} \\ $$$${m}\left(\mathrm{1}\right)={E}\left[{e}^{{x}} \right] \\ $$$${if}\:{this}\:{doesn}'{t}\:{exist}\:{then} \\ $$$$\int_{−\infty} ^{+\infty} {e}^{{x}} {f}\left({x}\right){dx}\:{doesn}'{t}\:{converge}. \\ $$$${This}\:{implies}\:{almost}\:{nothing}\:{or}\:{at}\:{least}\:{I} \\ $$$${don}'{t}\:{see}\:{how}\:{this}\:{proves}\:{that}\:{f}\:{doesn}'{t}\:{exist}. \\ $$$${For}\:{example}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}{e}^{−{x}/\mathrm{2}} {H}\left({x}\right),\:{where}\: \\ $$$${H}\left({x}\right)=\mathrm{1}\:{for}\:{x}\geqslant\mathrm{0}\:{and}\:{H}\left({x}\right)=\mathrm{0}\:{for}\:{x}<\mathrm{0}. \\ $$$${This}\:{is}\:{a}\:{pdf},\:{since}\:{it}\:{is}\:{locally}\:{integrable} \\ $$$${and}\:{obv}.\:\int_{−\infty} ^{\infty} {f}\left({x}\right){dx}=\int_{\mathrm{0}} ^{\infty} {e}^{−\left({x}/\mathrm{2}\right)} {d}\left({x}/\mathrm{2}\right)=\mathrm{1} \\ $$$${but}\:\int_{−\infty} ^{\infty} {e}^{{x}} {f}\left({x}\right){dx}=\int_{\mathrm{0}} ^{\infty} {e}^{\left({x}/\mathrm{2}\right)} {d}\left({x}/\mathrm{2}\right),\:{which} \\ $$$${diverges}. \\ $$$$ \\ $$

Commented by Spillover last updated on 05/Jul/24

thank you for clarification

$${thank}\:{you}\:{for}\:{clarification} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com