Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 208842 by NasaSara last updated on 24/Jun/24

does the rule of odd and even functions   can be applied with improper integration?  I=∫_(−∞) ^∞ xe^(−x^2 ) dx   while  f(x)= xe^(−x^2 )  is odd  then I =0

$${does}\:{the}\:{rule}\:{of}\:{odd}\:{and}\:{even}\:{functions}\: \\ $$$${can}\:{be}\:{applied}\:{with}\:{improper}\:{integration}? \\ $$$${I}=\int_{−\infty} ^{\infty} {xe}^{−{x}^{\mathrm{2}} } {dx}\: \\ $$$${while}\:\:{f}\left({x}\right)=\:{xe}^{−{x}^{\mathrm{2}} } \:{is}\:{odd} \\ $$$${then}\:{I}\:=\mathrm{0} \\ $$

Commented by Frix last updated on 24/Jun/24

Yes.

$$\mathrm{Yes}. \\ $$

Answered by mathzup last updated on 24/Jun/24

I=lim_(a→+∞) ∫_(−a) ^a xe^(−x^2 ) dx =0  puisque la fonction x→xe^(−x^2 ) est impaire

$${I}={lim}_{{a}\rightarrow+\infty} \int_{−{a}} ^{{a}} {xe}^{−{x}^{\mathrm{2}} } {dx}\:=\mathrm{0} \\ $$$${puisque}\:{la}\:{fonction}\:{x}\rightarrow{xe}^{−{x}^{\mathrm{2}} } {est}\:{impaire} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com