| ||
Question Number 208608 by Tawa11 last updated on 18/Jun/24  | ||
![]()  | ||
Answered by mr W last updated on 18/Jun/24  | ||
![]()  | ||
$${R}^{\mathrm{2}} =\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{a}}{\mathrm{2}}+{b}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{R}=\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{2}}+{ab}+{b}^{\mathrm{2}} } \\ $$  | ||
Commented by Tawa11 last updated on 18/Jun/24  | ||
![]()  | ||
$$\mathrm{Please}\:\mathrm{sir}, \\ $$$$\mathrm{Show}\:\mathrm{me}\:\mathrm{the}\:\mathrm{connection}\:\mathrm{lines}\:\mathrm{you}\:\mathrm{used}. \\ $$$$\mathrm{Thanks}\:\mathrm{sir} \\ $$  | ||
Commented by mr W last updated on 18/Jun/24  | ||
![]()  | ||
Commented by Tawa11 last updated on 18/Jun/24  | ||
![]()  | ||
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate} \\ $$  | ||
Answered by efronzo1 last updated on 19/Jun/24  | ||
![]()  | ||
$$\:\: \sqrt{\mathrm{2}}\:=\:\sqrt{\left({a}+{b}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\:\: =\:\sqrt{\frac{{a}^{\mathrm{2}} +\mathrm{2}{ab}+\mathrm{2}{b}^{\mathrm{2}} }{\mathrm{2}}}\: \\ $$  | ||
Commented by Tawa11 last updated on 19/Jun/24  | ||
![]()  | ||
$$\mathrm{Thanks}\:\mathrm{sir} \\ $$  | ||