Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 208431 by alcohol last updated on 15/Jun/24

h_a (x) = e^(−x)  + ax^2   show that h_a  admits a minimum in R

$${h}_{{a}} \left({x}\right)\:=\:{e}^{−{x}} \:+\:{ax}^{\mathrm{2}} \\ $$$${show}\:{that}\:{h}_{{a}} \:{admits}\:{a}\:{minimum}\:{in}\:\mathbb{R} \\ $$

Answered by mathzup last updated on 15/Jun/24

cas 1      a>0  lim_(x→−∞) h(x)=+∞  lim_(x→+∞) h(x)=+∞  h^′ (x)=2ax−e^(−x)   lim_(x→−∞)   h^′ (x)=−∞  lim_(x→+∞)   h^′ (x)=+∞  h^((2)) (x)=2a+e^(−x) >0 ⇒h^′  est strictement croissante  x          −∞              0            α       +∞  h^′ (x)    −∞ →     −1  →   0     +∞  ⇒∃  α    /  h^′ (α)=0  x        −∞                  α                 +∞  h^′                       −         0         +  h           decr             h(α)     croi  donc h possede un minimun qui est  h(α)=e^(−α)  +aα^2   h(0)=−1 and h(1)=e^(−1) +a>0 ⇒  α ∈]0,1[  rest a etudier les cas   a<0 et a=0

$${cas}\:\mathrm{1}\:\:\:\:\:\:{a}>\mathrm{0} \\ $$$${lim}_{{x}\rightarrow−\infty} {h}\left({x}\right)=+\infty \\ $$$${lim}_{{x}\rightarrow+\infty} {h}\left({x}\right)=+\infty \\ $$$${h}^{'} \left({x}\right)=\mathrm{2}{ax}−{e}^{−{x}} \\ $$$${lim}_{{x}\rightarrow−\infty} \:\:{h}^{'} \left({x}\right)=−\infty \\ $$$${lim}_{{x}\rightarrow+\infty} \:\:{h}^{'} \left({x}\right)=+\infty \\ $$$${h}^{\left(\mathrm{2}\right)} \left({x}\right)=\mathrm{2}{a}+{e}^{−{x}} >\mathrm{0}\:\Rightarrow{h}^{'} \:{est}\:{strictement}\:{croissante} \\ $$$${x}\:\:\:\:\:\:\:\:\:\:−\infty\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\alpha\:\:\:\:\:\:\:+\infty \\ $$$${h}^{'} \left({x}\right)\:\:\:\:−\infty\:\rightarrow\:\:\:\:\:−\mathrm{1}\:\:\rightarrow\:\:\:\mathrm{0} \\ $$$$\:\:\:+\infty \\ $$$$\Rightarrow\exists\:\:\alpha\:\:\:\:/\:\:{h}^{'} \left(\alpha\right)=\mathrm{0} \\ $$$${x}\:\:\:\:\:\:\:\:−\infty\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\alpha\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\infty \\ $$$${h}^{'} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:+ \\ $$$${h}\:\:\:\:\:\:\:\:\:\:\:{decr}\:\:\:\:\:\:\:\:\:\:\:\:\:{h}\left(\alpha\right)\:\:\:\:\:{croi} \\ $$$${donc}\:{h}\:{possede}\:{un}\:{minimun}\:{qui}\:{est} \\ $$$${h}\left(\alpha\right)={e}^{−\alpha} \:+{a}\alpha^{\mathrm{2}} \\ $$$${h}\left(\mathrm{0}\right)=−\mathrm{1}\:{and}\:{h}\left(\mathrm{1}\right)={e}^{−\mathrm{1}} +{a}>\mathrm{0}\:\Rightarrow \\ $$$$\left.\alpha\:\in\right]\mathrm{0},\mathrm{1}\left[\right. \\ $$$${rest}\:{a}\:{etudier}\:{les}\:{cas}\:\:\:{a}<\mathrm{0}\:{et}\:{a}=\mathrm{0} \\ $$

Answered by Frix last updated on 16/Jun/24

It′s not true for −(e/2)≤a≤0  a<−(e/2) ⇒ 1 local min plus 1 local max  a=−(e/2) ⇒ 1 saddle point [ _(horizontal tangent)^(=1 point with a) ]  −(e/2)<a≤0 ⇒ no min/max at all  a>0 ⇒ 1 absolute min

$$\mathrm{It}'\mathrm{s}\:\mathrm{not}\:\mathrm{true}\:\mathrm{for}\:−\frac{\mathrm{e}}{\mathrm{2}}\leqslant{a}\leqslant\mathrm{0} \\ $$$${a}<−\frac{\mathrm{e}}{\mathrm{2}}\:\Rightarrow\:\mathrm{1}\:\mathrm{local}\:\mathrm{min}\:\mathrm{plus}\:\mathrm{1}\:\mathrm{local}\:\mathrm{max} \\ $$$${a}=−\frac{\mathrm{e}}{\mathrm{2}}\:\Rightarrow\:\mathrm{1}\:\mathrm{saddle}\:\mathrm{point}\:\left[\:_{\mathrm{horizontal}\:\mathrm{tangent}} ^{=\mathrm{1}\:\mathrm{point}\:\mathrm{with}\:\mathrm{a}} \right] \\ $$$$−\frac{\mathrm{e}}{\mathrm{2}}<{a}\leqslant\mathrm{0}\:\Rightarrow\:\mathrm{no}\:\mathrm{min}/\mathrm{max}\:\mathrm{at}\:\mathrm{all} \\ $$$${a}>\mathrm{0}\:\Rightarrow\:\mathrm{1}\:\mathrm{absolute}\:\mathrm{min} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com