Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 208093 by depressiveshrek last updated on 04/Jun/24

lim_(n→∞)  (1/n)((a+(1/n))^2 +(a+(2/n))^2 +...+(a+((n−1)/n))^2 )

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{{n}}\left(\left({a}+\frac{\mathrm{1}}{{n}}\right)^{\mathrm{2}} +\left({a}+\frac{\mathrm{2}}{{n}}\right)^{\mathrm{2}} +...+\left({a}+\frac{{n}−\mathrm{1}}{{n}}\right)^{\mathrm{2}} \right) \\ $$

Answered by MM42 last updated on 04/Jun/24

=lim_(n→∞) (1/n)Σ_(i=1) ^(n−1) (a+(i/n))^2   =∫_0 ^1 (a+x)^2 dx=(1/3)(a+x)^3 ]_0 ^1   =(1/3)[(a+1)^3 −a^3 ]  =(1/3)(3a^2 +3a+1)  ✓

$$={lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}}{{n}}\underset{{i}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\left({a}+\frac{{i}}{{n}}\right)^{\mathrm{2}} \\ $$$$\left.=\int_{\mathrm{0}} ^{\mathrm{1}} \left({a}+{x}\right)^{\mathrm{2}} {dx}=\frac{\mathrm{1}}{\mathrm{3}}\left({a}+{x}\right)^{\mathrm{3}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left[\left({a}+\mathrm{1}\right)^{\mathrm{3}} −{a}^{\mathrm{3}} \right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{3}{a}^{\mathrm{2}} +\mathrm{3}{a}+\mathrm{1}\right)\:\:\checkmark\: \\ $$

Commented by depressiveshrek last updated on 04/Jun/24

This was my way of doing it, sufficient  for a calculus 1 course

$$\mathrm{This}\:\mathrm{was}\:\mathrm{my}\:\mathrm{way}\:\mathrm{of}\:\mathrm{doing}\:\mathrm{it},\:\mathrm{sufficient} \\ $$$$\mathrm{for}\:\mathrm{a}\:\mathrm{calculus}\:\mathrm{1}\:\mathrm{course} \\ $$

Commented by depressiveshrek last updated on 04/Jun/24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com