Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 207416 by efronzo1 last updated on 14/May/24

$$\:\:\: \\ $$

Answered by mr W last updated on 14/May/24

(U_2 /q)+U_2 +qU_2 =9((q/U_2 )+(1/U_2 )+(1/(qU_2 )))  U_2 ^2 ((1/q)+1+q)=9(q+1+(1/q))  q>0 ⇒ q+(1/q)+1≥3 ≠0  ⇒U_2 ^2 =9  ⇒U_2 =3  U_2 −7=−4

$$\frac{{U}_{\mathrm{2}} }{{q}}+{U}_{\mathrm{2}} +{qU}_{\mathrm{2}} =\mathrm{9}\left(\frac{{q}}{{U}_{\mathrm{2}} }+\frac{\mathrm{1}}{{U}_{\mathrm{2}} }+\frac{\mathrm{1}}{{qU}_{\mathrm{2}} }\right) \\ $$$${U}_{\mathrm{2}} ^{\mathrm{2}} \left(\frac{\mathrm{1}}{{q}}+\mathrm{1}+{q}\right)=\mathrm{9}\left({q}+\mathrm{1}+\frac{\mathrm{1}}{{q}}\right) \\ $$$${q}>\mathrm{0}\:\Rightarrow\:{q}+\frac{\mathrm{1}}{{q}}+\mathrm{1}\geqslant\mathrm{3}\:\neq\mathrm{0} \\ $$$$\Rightarrow{U}_{\mathrm{2}} ^{\mathrm{2}} =\mathrm{9} \\ $$$$\Rightarrow{U}_{\mathrm{2}} =\mathrm{3} \\ $$$${U}_{\mathrm{2}} −\mathrm{7}=−\mathrm{4} \\ $$

Answered by Rasheed.Sindhi last updated on 14/May/24

a+ar+ar^2 =(9/a)+(9/(ar))+(9/(ar^2 ))  (a^2 /9)(1+r+r^2 )=1+(1/r)+(1/r^2 )  (a^2 /9)(1+r+r^2 )=((r^2 +r+1)/r^2 )  (a^2 /9)=(1/r^2 )  a^2 r^2 =9  ar_(>0) =3  U_2 =3  U_2 −7=3−7=−4

$${a}+{ar}+{ar}^{\mathrm{2}} =\frac{\mathrm{9}}{{a}}+\frac{\mathrm{9}}{{ar}}+\frac{\mathrm{9}}{{ar}^{\mathrm{2}} } \\ $$$$\frac{{a}^{\mathrm{2}} }{\mathrm{9}}\left(\mathrm{1}+{r}+{r}^{\mathrm{2}} \right)=\mathrm{1}+\frac{\mathrm{1}}{{r}}+\frac{\mathrm{1}}{{r}^{\mathrm{2}} } \\ $$$$\frac{{a}^{\mathrm{2}} }{\mathrm{9}}\left(\mathrm{1}+{r}+{r}^{\mathrm{2}} \right)=\frac{{r}^{\mathrm{2}} +{r}+\mathrm{1}}{{r}^{\mathrm{2}} } \\ $$$$\frac{{a}^{\mathrm{2}} }{\mathrm{9}}=\frac{\mathrm{1}}{{r}^{\mathrm{2}} } \\ $$$${a}^{\mathrm{2}} {r}^{\mathrm{2}} =\mathrm{9} \\ $$$${ar}_{>\mathrm{0}} =\mathrm{3} \\ $$$${U}_{\mathrm{2}} =\mathrm{3} \\ $$$${U}_{\mathrm{2}} −\mathrm{7}=\mathrm{3}−\mathrm{7}=−\mathrm{4} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com