Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 207394 by hardmath last updated on 13/May/24

(a/b)  =  (c/d)  a^3  − b^3  = 625  c^3  − d^3  = 1  Find:   a,b,c,d = ?

$$\frac{\mathrm{a}}{\mathrm{b}}\:\:=\:\:\frac{\mathrm{c}}{\mathrm{d}} \\ $$$$\mathrm{a}^{\mathrm{3}} \:−\:\mathrm{b}^{\mathrm{3}} \:=\:\mathrm{625} \\ $$$$\mathrm{c}^{\mathrm{3}} \:−\:\mathrm{d}^{\mathrm{3}} \:=\:\mathrm{1} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}\:=\:? \\ $$

Answered by mr W last updated on 13/May/24

(a/b)=(c/d)=k, say  a=kb, c=kd with k≠1  b^3 (k^3 −1)=625 ⇒b=(((625)/(k^3 −1)))^(1/3)  ⇒a=k(((625)/(k^3 −1)))^(1/3)   d^3 (k^3 −1)=1 ⇒d=(1/( ((k^3 −1))^(1/3) )) ⇒c=(k/( ((k^3 −1))^(1/3) ))  3 equations for 4 variables, so  there is no unique solution.

$$\frac{{a}}{{b}}=\frac{{c}}{{d}}={k},\:{say} \\ $$$${a}={kb},\:{c}={kd}\:{with}\:{k}\neq\mathrm{1} \\ $$$${b}^{\mathrm{3}} \left({k}^{\mathrm{3}} −\mathrm{1}\right)=\mathrm{625}\:\Rightarrow{b}=\sqrt[{\mathrm{3}}]{\frac{\mathrm{625}}{{k}^{\mathrm{3}} −\mathrm{1}}}\:\Rightarrow{a}={k}\sqrt[{\mathrm{3}}]{\frac{\mathrm{625}}{{k}^{\mathrm{3}} −\mathrm{1}}} \\ $$$${d}^{\mathrm{3}} \left({k}^{\mathrm{3}} −\mathrm{1}\right)=\mathrm{1}\:\Rightarrow{d}=\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{k}^{\mathrm{3}} −\mathrm{1}}}\:\Rightarrow{c}=\frac{{k}}{\:\sqrt[{\mathrm{3}}]{{k}^{\mathrm{3}} −\mathrm{1}}} \\ $$$$\mathrm{3}\:{equations}\:{for}\:\mathrm{4}\:{variables},\:{so} \\ $$$${there}\:{is}\:{no}\:{unique}\:{solution}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com