Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 207205 by hardmath last updated on 09/May/24

 { ((x^2   +  xy  =  4x)),((y^2  + xy  =  4y)) :}  Find:   log_(16)  (x_1  + y_1  + x_2  + y_2 ) = ?

$$\begin{cases}{\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{xy}\:\:=\:\:\mathrm{4x}}\\{\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{xy}\:\:=\:\:\mathrm{4y}}\end{cases} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{log}_{\mathrm{16}} \:\left(\mathrm{x}_{\mathrm{1}} \:+\:\mathrm{y}_{\mathrm{1}} \:+\:\mathrm{x}_{\mathrm{2}} \:+\:\mathrm{y}_{\mathrm{2}} \right)\:=\:? \\ $$

Answered by A5T last updated on 09/May/24

x^2 −y^2 =4x−4y; x−y≠0⇒x+y=4  x=y⇒2x^2 =4x⇒x^2 −2x=0⇒x_1 =0;x_2 = 2  ⇒log_(16) (x_1 +x_2 +y_1 +y_2 )=log_(16) 4=(1/2)  There are infinitely many solutions otherwise.

$${x}^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{4}{x}−\mathrm{4}{y};\:{x}−{y}\neq\mathrm{0}\Rightarrow{x}+{y}=\mathrm{4} \\ $$$${x}={y}\Rightarrow\mathrm{2}{x}^{\mathrm{2}} =\mathrm{4}{x}\Rightarrow{x}^{\mathrm{2}} −\mathrm{2}{x}=\mathrm{0}\Rightarrow{x}_{\mathrm{1}} =\mathrm{0};{x}_{\mathrm{2}} =\:\mathrm{2} \\ $$$$\Rightarrow{log}_{\mathrm{16}} \left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{y}_{\mathrm{1}} +{y}_{\mathrm{2}} \right)={log}_{\mathrm{16}} \mathrm{4}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${There}\:{are}\:{infinitely}\:{many}\:{solutions}\:{otherwise}. \\ $$

Commented by hardmath last updated on 09/May/24

thank you dear professor

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com