Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 205596 by cortano12 last updated on 25/Mar/24

Commented by A5T last updated on 25/Mar/24

DE is not uniquely defined.

$${DE}\:{is}\:{not}\:{uniquely}\:{defined}. \\ $$

Answered by TheHoneyCat last updated on 31/Mar/24

As pointed out by A5T this question is missing  something to be solvable.    To be more explicit, you are lacking a  constraint on D. D is currently free to  be anywhere on the line, so x can take any  value from +∞ (if you send D to infinity)  to 1 (which is the minial value you can get  by putting D in the middle of [C,B].)    So the smartass answer is [1,+∞[  but in all seriousness you are missing a line  in your exercise somewhere...

$$\mathrm{As}\:\mathrm{pointed}\:\mathrm{out}\:\mathrm{by}\:{A}\mathrm{5}{T}\:\mathrm{this}\:\mathrm{question}\:\mathrm{is}\:\mathrm{missing} \\ $$$$\mathrm{something}\:\mathrm{to}\:\mathrm{be}\:\mathrm{solvable}. \\ $$$$ \\ $$$$\mathrm{To}\:\mathrm{be}\:\mathrm{more}\:\mathrm{explicit},\:\mathrm{you}\:\mathrm{are}\:\mathrm{lacking}\:\mathrm{a} \\ $$$$\mathrm{constraint}\:\mathrm{on}\:{D}.\:{D}\:\mathrm{is}\:\mathrm{currently}\:\mathrm{free}\:\mathrm{to} \\ $$$$\mathrm{be}\:\mathrm{anywhere}\:\mathrm{on}\:\mathrm{the}\:\mathrm{line},\:\mathrm{so}\:{x}\:\mathrm{can}\:\mathrm{take}\:\mathrm{any} \\ $$$$\mathrm{value}\:\mathrm{from}\:+\infty\:\left(\mathrm{if}\:\mathrm{you}\:\mathrm{send}\:{D}\:\mathrm{to}\:\mathrm{infinity}\right) \\ $$$$\mathrm{to}\:\mathrm{1}\:\left(\mathrm{which}\:\mathrm{is}\:\mathrm{the}\:\mathrm{minial}\:\mathrm{value}\:\mathrm{you}\:\mathrm{can}\:\mathrm{get}\right. \\ $$$$\left.\mathrm{by}\:\mathrm{putting}\:{D}\:\mathrm{in}\:\mathrm{the}\:\mathrm{middle}\:\mathrm{of}\:\left[{C},{B}\right].\right) \\ $$$$ \\ $$$$\mathrm{So}\:\mathrm{the}\:\mathrm{smartass}\:\mathrm{answer}\:\mathrm{is}\:\left[\mathrm{1},+\infty\left[\right.\right. \\ $$$$\mathrm{but}\:\mathrm{in}\:\mathrm{all}\:\mathrm{seriousness}\:\mathrm{you}\:\mathrm{are}\:\mathrm{missing}\:\mathrm{a}\:\mathrm{line} \\ $$$$\mathrm{in}\:\mathrm{your}\:\mathrm{exercise}\:\mathrm{somewhere}... \\ $$

Commented by A5T last updated on 31/Mar/24

The shortest distance from a point,say E,to a  line,say BD, is the length of the perpendicular  from E to BD. So,to find the shortest distance,  let the perpendicular from E to BD meet BD  at F. Then, (1/2)=((EF)/1)(similar △)⇒EF=(1/2).

$${The}\:{shortest}\:{distance}\:{from}\:{a}\:{point},{say}\:{E},{to}\:{a} \\ $$$${line},{say}\:{BD},\:{is}\:{the}\:{length}\:{of}\:{the}\:{perpendicular} \\ $$$${from}\:{E}\:{to}\:{BD}.\:{So},{to}\:{find}\:{the}\:{shortest}\:{distance}, \\ $$$${let}\:{the}\:{perpendicular}\:{from}\:{E}\:{to}\:{BD}\:{meet}\:{BD} \\ $$$${at}\:{F}.\:{Then},\:\frac{\mathrm{1}}{\mathrm{2}}=\frac{{EF}}{\mathrm{1}}\left({similar}\:\bigtriangleup\right)\Rightarrow{EF}=\frac{\mathrm{1}}{\mathrm{2}}. \\ $$

Commented by TheHoneyCat last updated on 31/Mar/24

Oh yeah, my bad ��. Thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com