Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 205559 by mnjuly1970 last updated on 24/Mar/24

     Question. (math analysis)    (X ,d ) is a metric space and    (p_n )_(n=1) ^∞  is a sequence in X.     (p_n )_(n=1) ^( ∞) is cauchy if and  only if     lim_(N→∞) diam (E_N )=0.    where , E_N  = { p_N  , p_(N+1)  , ...}    diam E:=sup{d(x,y)∣x,y ∈E }

$$ \\ $$$$\:\:\:{Question}.\:\left({math}\:{analysis}\right) \\ $$$$\:\:\left({X}\:,{d}\:\right)\:{is}\:{a}\:{metric}\:{space}\:{and} \\ $$$$\:\:\left({p}_{{n}} \right)_{{n}=\mathrm{1}} ^{\infty} \:{is}\:{a}\:{sequence}\:{in}\:{X}. \\ $$$$\:\:\:\left({p}_{{n}} \right)_{{n}=\mathrm{1}} ^{\:\infty} {is}\:{cauchy}\:{if}\:{and}\:\:{only}\:{if} \\ $$$$\:\:\:\mathrm{lim}_{\mathrm{N}\rightarrow\infty} {diam}\:\left({E}_{\mathrm{N}} \right)=\mathrm{0}. \\ $$$$\:\:{where}\:,\:{E}_{{N}} \:=\:\left\{\:{p}_{{N}} \:,\:{p}_{{N}+\mathrm{1}} \:,\:...\right\} \\ $$$$\:\:{diam}\:{E}:={sup}\left\{{d}\left({x},{y}\right)\mid{x},{y}\:\in{E}\:\right\} \\ $$$$\:\:\:\: \\ $$

Answered by Berbere last updated on 24/Mar/24

dim(E)=sup d(x_i ,x_j );(x_i ,x_j )∈E^2   Let p_(n )  a cauchy sequence⇒∀ε>0 ∃N∈N ∣∀k,m≥0  d(P_(N+k) ,P_(N+m) )≤ε......1  E_N {P_N ,P_(N+1) ,.......};let S_N =sup (d(x,y)∣(x,y)∈E_N ^2 )  S_N ∈R since  P_N  is cauchy Sequence ∃a>0 ⇒d(P_k ,P_l )<a  ∀(k,l)∈N^2   if N_1 >N_2 ⇒E_N_2  ⊂E_N_1  ⇒S_N_2  <S_N_1    S_(N )  decrease biunded Sequence  ⇒Diam(E_N ) Cv  1...⇒∀ε≥0    ∃N ∈N ∣ diam(E_N )<ε  lim_(N→∞)  diam(E_N )=a∈R_+   a<diam(E_N )  (E_N  decrease)⇒∀ε>0 0≤ a<ε  ∀n>0  0≤a≤(1/n)⇒a∈∩^(n∈N^∗ ) [0,(1/n)]={0}  ⇒lim_(n→∞)  diam(E_N )=0

$${dim}\left({E}\right)={sup}\:{d}\left({x}_{{i}} ,{x}_{{j}} \right);\left({x}_{{i}} ,{x}_{{j}} \right)\in{E}^{\mathrm{2}} \\ $$$${Let}\:{p}_{{n}\:} \:{a}\:{cauchy}\:{sequence}\Rightarrow\forall\epsilon>\mathrm{0}\:\exists{N}\in\mathbb{N}\:\mid\forall{k},{m}\geqslant\mathrm{0}\:\:{d}\left({P}_{{N}+{k}} ,{P}_{{N}+{m}} \right)\leqslant\epsilon......\mathrm{1} \\ $$$${E}_{{N}} \left\{{P}_{{N}} ,{P}_{{N}+\mathrm{1}} ,.......\right\};{let}\:{S}_{{N}} ={sup}\:\left({d}\left({x},{y}\right)\mid\left({x},{y}\right)\in{E}_{{N}} ^{\mathrm{2}} \right) \\ $$$${S}_{{N}} \in\mathbb{R}\:{since}\:\:{P}_{{N}} \:{is}\:{cauchy}\:{Sequence}\:\exists{a}>\mathrm{0}\:\Rightarrow{d}\left({P}_{{k}} ,{P}_{{l}} \right)<{a} \\ $$$$\forall\left({k},{l}\right)\in\mathbb{N}^{\mathrm{2}} \\ $$$${if}\:{N}_{\mathrm{1}} >{N}_{\mathrm{2}} \Rightarrow{E}_{{N}_{\mathrm{2}} } \subset{E}_{{N}_{\mathrm{1}} } \Rightarrow{S}_{{N}_{\mathrm{2}} } <{S}_{{N}_{\mathrm{1}} } \:\:{S}_{{N}\:} \:{decrease}\:{biunded}\:{Sequence} \\ $$$$\Rightarrow{Diam}\left({E}_{{N}} \right)\:{Cv} \\ $$$$\mathrm{1}...\Rightarrow\forall\epsilon\geqslant\mathrm{0}\:\:\:\:\exists{N}\:\in\mathbb{N}\:\mid\:{diam}\left({E}_{{N}} \right)<\epsilon \\ $$$$\underset{{N}\rightarrow\infty} {\mathrm{lim}}\:{diam}\left({E}_{{N}} \right)={a}\in\mathbb{R}_{+} \\ $$$${a}<{diam}\left({E}_{{N}} \right)\:\:\left({E}_{{N}} \:{decrease}\right)\Rightarrow\forall\epsilon>\mathrm{0}\:\mathrm{0}\leqslant\:{a}<\epsilon \\ $$$$\forall{n}>\mathrm{0}\:\:\mathrm{0}\leqslant{a}\leqslant\frac{\mathrm{1}}{{n}}\Rightarrow{a}\in\overset{{n}\in\mathbb{N}^{\ast} } {\cap}\left[\mathrm{0},\frac{\mathrm{1}}{{n}}\right]=\left\{\mathrm{0}\right\} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{diam}\left({E}_{{N}} \right)=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 24/Mar/24

thanks alot sir ...

$${thanks}\:{alot}\:{sir}\:... \\ $$

Commented by Berbere last updated on 24/Mar/24

Withe Pleasur

$${Withe}\:{Pleasur} \\ $$

Answered by aleks041103 last updated on 04/Apr/24

Let a_N =diam({p_k }_(k=N) ^∞ ).  We are asked to prove  {p_k }_(k=1) ^∞  is Cauchy ⇔ lim_(N→∞)  a_N  = 0    1. Cauchy ⇒ a_N →0  Cauchy ⇒ ∀ε>0,∃M:d(p_m ,p_n )<ε/2, ∀m,n>M  ⇒a_M =diam({p_k }_(k=M+1) ^∞ )=sup{d(p_m ,p_n )∣m,n>M}≤ε/2<ε  it is easy to see that a_n >0 is decreasing  ⇒∀m≥M, 0<a_m ≤a_M <ε, i.e. ∣a_m ∣<ε  ⇒∀ε>0,∃M:∣a_m −0∣<ε, ∀m>M  ⇒lim_(N→∞)  a_N =0    2.a_n → 0 ⇒ Cauchy  a_N → 0 (a_N >0)⇒ ∀ε>0, ∃M: a_N <ε, ∀N≥M  ⇒a_M =sup_(m,n≥M)  d(p_m ,p_n ) < ε  ⇒d(p_m ,p_n )<ε, ∀m,n>M  ⇒∀ε>0,∃M:d(p_m ,p_n )<ε, ∀m,n>M  ⇒Cauchy

$${Let}\:{a}_{{N}} ={diam}\left(\left\{{p}_{{k}} \right\}_{{k}={N}} ^{\infty} \right). \\ $$$${We}\:{are}\:{asked}\:{to}\:{prove} \\ $$$$\left\{{p}_{{k}} \right\}_{{k}=\mathrm{1}} ^{\infty} \:{is}\:{Cauchy}\:\Leftrightarrow\:\underset{{N}\rightarrow\infty} {{lim}}\:{a}_{{N}} \:=\:\mathrm{0} \\ $$$$ \\ $$$$\mathrm{1}.\:{Cauchy}\:\Rightarrow\:{a}_{{N}} \rightarrow\mathrm{0} \\ $$$${Cauchy}\:\Rightarrow\:\forall\epsilon>\mathrm{0},\exists{M}:{d}\left({p}_{{m}} ,{p}_{{n}} \right)<\epsilon/\mathrm{2},\:\forall{m},{n}>{M} \\ $$$$\Rightarrow{a}_{{M}} ={diam}\left(\left\{{p}_{{k}} \right\}_{{k}={M}+\mathrm{1}} ^{\infty} \right)={sup}\left\{{d}\left({p}_{{m}} ,{p}_{{n}} \right)\mid{m},{n}>{M}\right\}\leqslant\epsilon/\mathrm{2}<\epsilon \\ $$$${it}\:{is}\:{easy}\:{to}\:{see}\:{that}\:{a}_{{n}} >\mathrm{0}\:{is}\:{decreasing} \\ $$$$\Rightarrow\forall{m}\geqslant{M},\:\mathrm{0}<{a}_{{m}} \leqslant{a}_{{M}} <\epsilon,\:{i}.{e}.\:\mid{a}_{{m}} \mid<\epsilon \\ $$$$\Rightarrow\forall\epsilon>\mathrm{0},\exists{M}:\mid{a}_{{m}} −\mathrm{0}\mid<\epsilon,\:\forall{m}>{M} \\ $$$$\Rightarrow\underset{{N}\rightarrow\infty} {{lim}}\:{a}_{{N}} =\mathrm{0} \\ $$$$ \\ $$$$\mathrm{2}.{a}_{{n}} \rightarrow\:\mathrm{0}\:\Rightarrow\:{Cauchy} \\ $$$${a}_{{N}} \rightarrow\:\mathrm{0}\:\left({a}_{{N}} >\mathrm{0}\right)\Rightarrow\:\forall\epsilon>\mathrm{0},\:\exists{M}:\:{a}_{{N}} <\epsilon,\:\forall{N}\geqslant{M} \\ $$$$\Rightarrow{a}_{{M}} =\underset{{m},{n}\geqslant{M}} {{sup}}\:{d}\left({p}_{{m}} ,{p}_{{n}} \right)\:<\:\epsilon \\ $$$$\Rightarrow{d}\left({p}_{{m}} ,{p}_{{n}} \right)<\epsilon,\:\forall{m},{n}>{M} \\ $$$$\Rightarrow\forall\epsilon>\mathrm{0},\exists{M}:{d}\left({p}_{{m}} ,{p}_{{n}} \right)<\epsilon,\:\forall{m},{n}>{M} \\ $$$$\Rightarrow{Cauchy} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com