Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 20545 by Tinkutara last updated on 23/Sep/17

Let ABC be an acute-angled triangle  with AC ≠ BC and let O be the  circumcenter and F be the foot of  altitude through C. Further, let X and  Y be the feet of perpendiculars dropped  from A and B respectively to (the  extension of) CO. Prove that FY ⊥ CA  using that ∠CFY = ∠CBY = ∠CAF.

$$\mathrm{Let}\:\mathrm{ABC}\:\mathrm{be}\:\mathrm{an}\:\mathrm{acute}-\mathrm{angled}\:\mathrm{triangle} \\ $$$$\mathrm{with}\:\mathrm{AC}\:\neq\:\mathrm{BC}\:\mathrm{and}\:\mathrm{let}\:\mathrm{O}\:\mathrm{be}\:\mathrm{the} \\ $$$$\mathrm{circumcenter}\:\mathrm{and}\:\mathrm{F}\:\mathrm{be}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of} \\ $$$$\mathrm{altitude}\:\mathrm{through}\:\mathrm{C}.\:\mathrm{Further},\:\mathrm{let}\:\mathrm{X}\:\mathrm{and} \\ $$$$\mathrm{Y}\:\mathrm{be}\:\mathrm{the}\:\mathrm{feet}\:\mathrm{of}\:\mathrm{perpendiculars}\:\mathrm{dropped} \\ $$$$\mathrm{from}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{respectively}\:\mathrm{to}\:\left(\mathrm{the}\right. \\ $$$$\left.\mathrm{extension}\:\mathrm{of}\right)\:\mathrm{CO}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{FY}\:\bot\:\mathrm{CA} \\ $$$$\mathrm{using}\:\mathrm{that}\:\angle\mathrm{CFY}\:=\:\angle\mathrm{CBY}\:=\:\angle\mathrm{CAF}. \\ $$

Commented by Tinkutara last updated on 23/Sep/17

Terms of Service

Privacy Policy

Contact: info@tinkutara.com