Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 2051 by Yozzi last updated on 01/Nov/15

Solve the d.e               x^2 (dy/dx)+xy+x^2 y^2 =1  by letting y=(1/x)+(1/v) where  v is a function of x.

$${Solve}\:{the}\:{d}.{e}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} \frac{{dy}}{{dx}}+{xy}+{x}^{\mathrm{2}} {y}^{\mathrm{2}} =\mathrm{1} \\ $$$${by}\:{letting}\:{y}=\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{v}}\:{where} \\ $$$${v}\:{is}\:{a}\:{function}\:{of}\:{x}.\: \\ $$

Answered by 123456 last updated on 01/Nov/15

x^2 (dy/dx)+xy+x^2 y^2 =1  y=(1/x)+(1/v)  (dy/dx)=−(1/x^2 )−(1/v^2 )∙(dv/dx)  −x^2 ((1/x^2 )+(1/v^2 )∙(dv/dx))+x((1/x)+(1/v))+x^2 ((1/x)+(1/v))^2 =1  −1−(x^2 /v^2 )∙(dv/dx)+1+(x/v)+(1+(x/v))^2 =1  −(x^2 /v^2 )∙(dv/dx)+(x/v)+1+((2x)/v)+(x^2 /v^2 )=1  (x^2 /v^2 )∙(dv/dx)=((3x)/v)+(x^2 /v^2 )  (dv/dx)=(v^2 /x^2 )(((3x)/v)+(x^2 /v^2 ))  (dv/dx)=((3v)/x)+1  continue

$${x}^{\mathrm{2}} \frac{{dy}}{{dx}}+{xy}+{x}^{\mathrm{2}} {y}^{\mathrm{2}} =\mathrm{1} \\ $$$${y}=\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{v}} \\ $$$$\frac{{dy}}{{dx}}=−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{{v}^{\mathrm{2}} }\centerdot\frac{{dv}}{{dx}} \\ $$$$−{x}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{{v}^{\mathrm{2}} }\centerdot\frac{{dv}}{{dx}}\right)+{x}\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{v}}\right)+{x}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{v}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$−\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{v}^{\mathrm{2}} }\centerdot\frac{{dv}}{{dx}}+\mathrm{1}+\frac{{x}}{{v}}+\left(\mathrm{1}+\frac{{x}}{{v}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$−\frac{{x}^{\mathrm{2}} }{{v}^{\mathrm{2}} }\centerdot\frac{{dv}}{{dx}}+\frac{{x}}{{v}}+\mathrm{1}+\frac{\mathrm{2}{x}}{{v}}+\frac{{x}^{\mathrm{2}} }{{v}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{2}} }{{v}^{\mathrm{2}} }\centerdot\frac{{dv}}{{dx}}=\frac{\mathrm{3}{x}}{{v}}+\frac{{x}^{\mathrm{2}} }{{v}^{\mathrm{2}} } \\ $$$$\frac{{dv}}{{dx}}=\frac{{v}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\left(\frac{\mathrm{3}{x}}{{v}}+\frac{{x}^{\mathrm{2}} }{{v}^{\mathrm{2}} }\right) \\ $$$$\frac{{dv}}{{dx}}=\frac{\mathrm{3}{v}}{{x}}+\mathrm{1} \\ $$$$\mathrm{continue} \\ $$$$ \\ $$

Commented by prakash jain last updated on 01/Nov/15

v=Σ_(i=1) ^n a_i x^i   v′=Σ_(i=1) ^n ia_i x^(i−1)   ((3v)/x)=Σ_(i=1) ^n 3a_i x^(i−1)   v′=((3v)/x)+1  equating coeffiients  a_1 =3a_1 +1⇒a_1 =−(1/2)  2a_2 =3a_2 ⇒a_2 =0  3a_3 =3a_3 ⇒a_3 =c  4a_4 =3a_4 ⇒a_4 =0 also a_5 ,...a_n =0  v=cx^3 −(x/2)

$${v}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{i}} {x}^{{i}} \\ $$$${v}'=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{ia}_{{i}} {x}^{{i}−\mathrm{1}} \\ $$$$\frac{\mathrm{3}{v}}{{x}}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{3}{a}_{{i}} {x}^{{i}−\mathrm{1}} \\ $$$${v}'=\frac{\mathrm{3}{v}}{{x}}+\mathrm{1} \\ $$$${equating}\:{coeffiients} \\ $$$${a}_{\mathrm{1}} =\mathrm{3}{a}_{\mathrm{1}} +\mathrm{1}\Rightarrow{a}_{\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{2}{a}_{\mathrm{2}} =\mathrm{3}{a}_{\mathrm{2}} \Rightarrow{a}_{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{3}{a}_{\mathrm{3}} =\mathrm{3}{a}_{\mathrm{3}} \Rightarrow{a}_{\mathrm{3}} ={c} \\ $$$$\mathrm{4}{a}_{\mathrm{4}} =\mathrm{3}{a}_{\mathrm{4}} \Rightarrow{a}_{\mathrm{4}} =\mathrm{0}\:{also}\:{a}_{\mathrm{5}} ,...{a}_{{n}} =\mathrm{0} \\ $$$${v}={cx}^{\mathrm{3}} −\frac{{x}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com