Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 204518 by Abdullahrussell last updated on 20/Feb/24

Answered by TonyCWX08 last updated on 20/Feb/24

  let us solve y^y =2 first  y^y =2  y=2^(1/y)   y=(e^(ln(2)) )^(1/y)   y=e^((ln(2))/y)   ln(2)=((ln(2))/y)e^((ln(2))/y)   Using LambertW function,  W(ln(2)) = ((ln(2))/y)  y=((ln(2))/(W(ln(2))))  y = e^(W(ln(2)))   According to WolframAlpha,  e^(W(ln(2))) ≈1.55961=y    So  y^y =2  1.55961^(1.55961) =2  tan(x)^(tan(x)) =1.55961^(1.55961)   tan(x)=1.55961  x=tan^(−1) (1.55961)  x=1.00064+kπ , k∈Z

$$ \\ $$$${let}\:{us}\:{solve}\:{y}^{{y}} =\mathrm{2}\:{first} \\ $$$${y}^{{y}} =\mathrm{2} \\ $$$${y}=\mathrm{2}^{\frac{\mathrm{1}}{{y}}} \\ $$$${y}=\left({e}^{{ln}\left(\mathrm{2}\right)} \right)^{\frac{\mathrm{1}}{{y}}} \\ $$$${y}={e}^{\frac{{ln}\left(\mathrm{2}\right)}{{y}}} \\ $$$${ln}\left(\mathrm{2}\right)=\frac{{ln}\left(\mathrm{2}\right)}{{y}}{e}^{\frac{{ln}\left(\mathrm{2}\right)}{{y}}} \\ $$$${Using}\:{LambertW}\:{function}, \\ $$$${W}\left({ln}\left(\mathrm{2}\right)\right)\:=\:\frac{{ln}\left(\mathrm{2}\right)}{{y}} \\ $$$${y}=\frac{{ln}\left(\mathrm{2}\right)}{{W}\left({ln}\left(\mathrm{2}\right)\right)} \\ $$$${y}\:=\:{e}^{{W}\left({ln}\left(\mathrm{2}\right)\right)} \\ $$$${According}\:{to}\:{WolframAlpha}, \\ $$$${e}^{{W}\left({ln}\left(\mathrm{2}\right)\right)} \approx\mathrm{1}.\mathrm{55961}={y} \\ $$$$ \\ $$$${So} \\ $$$${y}^{{y}} =\mathrm{2} \\ $$$$\mathrm{1}.\mathrm{55961}^{\mathrm{1}.\mathrm{55961}} =\mathrm{2} \\ $$$${tan}\left({x}\right)^{{tan}\left({x}\right)} =\mathrm{1}.\mathrm{55961}^{\mathrm{1}.\mathrm{55961}} \\ $$$${tan}\left({x}\right)=\mathrm{1}.\mathrm{55961} \\ $$$${x}=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}.\mathrm{55961}\right) \\ $$$${x}=\mathrm{1}.\mathrm{00064}+{k}\pi\:,\:{k}\in{Z} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com