Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 2045 by prakash jain last updated on 31/Oct/15

Is the following series absolutely convergent?  S_1 =Σ_(n=1) ^∞  (1/(n(n+1)))  Is the following series absolutely convergent?  S_2 =Σ_(n=1) ^∞  ((1/n)− (1/(n+1)))

$${I}\mathrm{s}\:{the}\:{following}\:{series}\:{absolutely}\:{convergent}? \\ $$$${S}_{\mathrm{1}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)} \\ $$$${Is}\:{the}\:{following}\:{series}\:{absolutely}\:{convergent}? \\ $$$${S}_{\mathrm{2}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\frac{\mathrm{1}}{{n}}−\:\frac{\mathrm{1}}{{n}+\mathrm{1}}\right) \\ $$

Commented by 123456 last updated on 31/Oct/15

(1/(n(n+1)))=(1/n)−(1/(n+1))  its telescoping serie and it converge since  Σ_(i=1) ^n ((1/i)−(1/(i+1)))=1−(1/2)+(1/2)−(1/3)+...+(1/n)−(1/(n+1))  =1−(1/(n+1))→1 (n→+∞)

$$\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)}=\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}} \\ $$$$\mathrm{its}\:\mathrm{telescoping}\:\mathrm{serie}\:\mathrm{and}\:\mathrm{it}\:\mathrm{converge}\:\mathrm{since} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{1}}{{i}}−\frac{\mathrm{1}}{{i}+\mathrm{1}}\right)=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}+...+\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}} \\ $$$$=\mathrm{1}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\rightarrow\mathrm{1}\:\left({n}\rightarrow+\infty\right) \\ $$

Commented by prakash jain last updated on 31/Oct/15

So S_1 =S_2  and convergent. Then it has to be absolutely  convergent, since each term is +ve.

$$\mathrm{So}\:{S}_{\mathrm{1}} ={S}_{\mathrm{2}} \:\mathrm{and}\:\mathrm{convergent}.\:\mathrm{Then}\:\mathrm{it}\:\mathrm{has}\:\mathrm{to}\:\mathrm{be}\:\mathrm{absolutely} \\ $$$$\mathrm{convergent},\:\mathrm{since}\:\mathrm{each}\:\mathrm{term}\:\mathrm{is}\:+\mathrm{ve}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com