Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 204039 by hardmath last updated on 04/Feb/24

 determinant ((1,7,(−1)),(9,(−3),x),((−1),5,3))= 0   ⇒ x = ?

$$\begin{vmatrix}{\mathrm{1}}&{\mathrm{7}}&{−\mathrm{1}}\\{\mathrm{9}}&{−\mathrm{3}}&{\boldsymbol{\mathrm{x}}}\\{−\mathrm{1}}&{\mathrm{5}}&{\mathrm{3}}\end{vmatrix}=\:\mathrm{0}\:\:\:\Rightarrow\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$

Answered by deleteduser1 last updated on 04/Feb/24

1(−9−5x)−7(27+x)−1(45−3)=0  ⇒−9−5x−189−7x−42=0⇒12x=−240  ⇒x=−20

$$\mathrm{1}\left(−\mathrm{9}−\mathrm{5}{x}\right)−\mathrm{7}\left(\mathrm{27}+{x}\right)−\mathrm{1}\left(\mathrm{45}−\mathrm{3}\right)=\mathrm{0} \\ $$$$\Rightarrow−\mathrm{9}−\mathrm{5}{x}−\mathrm{189}−\mathrm{7}{x}−\mathrm{42}=\mathrm{0}\Rightarrow\mathrm{12}{x}=−\mathrm{240} \\ $$$$\Rightarrow{x}=−\mathrm{20} \\ $$

Answered by Rasheed.Sindhi last updated on 05/Feb/24

 determinant ((1,7,(−1)),(9,(−3),x),((−1),5,3))= 0  R_2 =R_2 −9R_1   R_3 =R_3 +R_1    determinant ((1,7,(−1)),(0,(−66),(x+9)),(0,(12),2))= 0  −66×2−12(x+9)=0      −132−12x−108=0        x=((−240)/(12))=−20

$$\begin{vmatrix}{\mathrm{1}}&{\mathrm{7}}&{−\mathrm{1}}\\{\mathrm{9}}&{−\mathrm{3}}&{\boldsymbol{\mathrm{x}}}\\{−\mathrm{1}}&{\mathrm{5}}&{\mathrm{3}}\end{vmatrix}=\:\mathrm{0} \\ $$$${R}_{\mathrm{2}} ={R}_{\mathrm{2}} −\mathrm{9}{R}_{\mathrm{1}} \\ $$$${R}_{\mathrm{3}} ={R}_{\mathrm{3}} +{R}_{\mathrm{1}} \\ $$$$\begin{vmatrix}{\mathrm{1}}&{\mathrm{7}}&{−\mathrm{1}}\\{\mathrm{0}}&{−\mathrm{66}}&{\boldsymbol{\mathrm{x}}+\mathrm{9}}\\{\mathrm{0}}&{\mathrm{12}}&{\mathrm{2}}\end{vmatrix}=\:\mathrm{0} \\ $$$$−\mathrm{66}×\mathrm{2}−\mathrm{12}\left({x}+\mathrm{9}\right)=\mathrm{0} \\ $$$$\:\:\:\:−\mathrm{132}−\mathrm{12}{x}−\mathrm{108}=\mathrm{0} \\ $$$$\:\:\:\:\:\:{x}=\frac{−\mathrm{240}}{\mathrm{12}}=−\mathrm{20} \\ $$$$ \\ $$

Commented by hardmath last updated on 05/Feb/24

thank you dear professors

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professors} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com