Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 204018 by mnjuly1970 last updated on 04/Feb/24

           Aut (Z )= ?         where , Aut (G )= { f ∣ f :G →_(G is a group) ^(f is a isomorphism)  G}

$$ \\ $$$$\:\:\:\:\:\:\:\:\:{Aut}\:\left(\mathbb{Z}\:\right)=\:? \\ $$$$\:\:\:\:\:\:\:{where}\:,\:{Aut}\:\left({G}\:\right)=\:\left\{\:{f}\:\mid\:{f}\::{G}\:\underset{{G}\:{is}\:{a}\:{group}} {\overset{{f}\:{is}\:{a}\:{isomorphism}} {\rightarrow}}\:{G}\right\} \\ $$

Answered by witcher3 last updated on 04/Feb/24

f∈Aut(G)  f(0)=0  let f(1)=a∈Z  ⇒f(n)=na   suppose ∣a∣>1⇒∃p∈IP  p∣a  ⇒1∉f(Z)?since  1=ap⇒p∣1 impossibl  ⇒∣a∣≤1  a=0⇒f=0 not bijective  ⇒a∈{1,−1}  f(x)= { (x),((−x)) :}  f=id;−id worcks

$$\mathrm{f}\in\mathrm{Aut}\left(\mathrm{G}\right) \\ $$$$\mathrm{f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\mathrm{let}\:\mathrm{f}\left(\mathrm{1}\right)=\mathrm{a}\in\mathbb{Z} \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{n}\right)=\mathrm{na}\: \\ $$$$\mathrm{suppose}\:\mid\mathrm{a}\mid>\mathrm{1}\Rightarrow\exists\mathrm{p}\in\mathrm{IP}\:\:\mathrm{p}\mid\mathrm{a} \\ $$$$\Rightarrow\mathrm{1}\notin\mathrm{f}\left(\mathbb{Z}\right)?\mathrm{since}\:\:\mathrm{1}=\mathrm{ap}\Rightarrow\mathrm{p}\mid\mathrm{1}\:\mathrm{impossibl} \\ $$$$\Rightarrow\mid\mathrm{a}\mid\leqslant\mathrm{1} \\ $$$$\mathrm{a}=\mathrm{0}\Rightarrow\mathrm{f}=\mathrm{0}\:\mathrm{not}\:\mathrm{bijective} \\ $$$$\Rightarrow\mathrm{a}\in\left\{\mathrm{1},−\mathrm{1}\right\} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{x}}\\{−\boldsymbol{\mathrm{x}}}\end{cases} \\ $$$$\boldsymbol{\mathrm{f}}=\boldsymbol{\mathrm{id}};−\mathrm{id}\:\mathrm{worcks} \\ $$

Commented by mnjuly1970 last updated on 04/Feb/24

$$\: \\ $$

Commented by witcher3 last updated on 04/Feb/24

withe Pleasur

$$\mathrm{withe}\:\mathrm{Pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com