Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 201352 by cortano12 last updated on 05/Dec/23

   2023^(2023)  = ... (mod 13)

$$\:\:\:\mathrm{2023}^{\mathrm{2023}} \:=\:...\:\left(\mathrm{mod}\:\mathrm{13}\right) \\ $$

Answered by Rasheed.Sindhi last updated on 05/Dec/23

   2023^(2023)  ≡ ... (mod 13)  2023^(2023)        ≡8^(2023) ≡x(mod 13)      [∵ 2023≡8(mod 13)]  ∵8^4 ≡1(mod 13  ∴ 8^(2023) =(8^4 )^(505) (8^3 )≡8^3 ≡5(mod 13)

$$\:\:\:\mathrm{2023}^{\mathrm{2023}} \:\equiv\:...\:\left(\mathrm{mod}\:\mathrm{13}\right) \\ $$$$\mathrm{2023}^{\mathrm{2023}} \\ $$$$\:\:\:\:\:\equiv\mathrm{8}^{\mathrm{2023}} \equiv{x}\left(\mathrm{mod}\:\mathrm{13}\right)\:\:\:\:\:\:\left[\because\:\mathrm{2023}\equiv\mathrm{8}\left(\mathrm{mod}\:\mathrm{13}\right)\right] \\ $$$$\because\mathrm{8}^{\mathrm{4}} \equiv\mathrm{1}\left({mod}\:\mathrm{13}\right. \\ $$$$\therefore\:\mathrm{8}^{\mathrm{2023}} =\left(\mathrm{8}^{\mathrm{4}} \right)^{\mathrm{505}} \left(\mathrm{8}^{\mathrm{3}} \right)\equiv\mathrm{8}^{\mathrm{3}} \equiv\mathrm{5}\left(\mathrm{mod}\:\mathrm{13}\right) \\ $$

Answered by mr W last updated on 05/Dec/23

2023^(2023)  mod 13  =(155×13+8)^(2023)  mod 13  ≡8^(2023)  mod 13  =8×(64)^(1011)  mod 13  =8×(5×13−1)^(1011)  mod 13  ≡−8 mod 13  ≡5 mod 13

$$\mathrm{2023}^{\mathrm{2023}} \:{mod}\:\mathrm{13} \\ $$$$=\left(\mathrm{155}×\mathrm{13}+\mathrm{8}\right)^{\mathrm{2023}} \:{mod}\:\mathrm{13} \\ $$$$\equiv\mathrm{8}^{\mathrm{2023}} \:{mod}\:\mathrm{13} \\ $$$$=\mathrm{8}×\left(\mathrm{64}\right)^{\mathrm{1011}} \:{mod}\:\mathrm{13} \\ $$$$=\mathrm{8}×\left(\mathrm{5}×\mathrm{13}−\mathrm{1}\right)^{\mathrm{1011}} \:{mod}\:\mathrm{13} \\ $$$$\equiv−\mathrm{8}\:{mod}\:\mathrm{13} \\ $$$$\equiv\mathrm{5}\:{mod}\:\mathrm{13} \\ $$

Answered by BaliramKumar last updated on 05/Dec/23

2023^(2023)  = x (mod13)              [φ(13)= 12]  (13×155+8)^((12×168+7))  = x(mod13)  (8)^((7))  = x(mod13)  (8^2 )^3 ×8^1  = x(mod13)  (64)^3 ×8^1  = x(mod13)  (−1)^3 ×8^1  = x(mod13)  −8 = x(mod13)  1×13−8 = x(mod13)  5 = 5(mod13)  x = 5

$$\mathrm{2023}^{\mathrm{2023}} \:=\:\mathrm{x}\:\left(\mathrm{mod13}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\phi\left(\mathrm{13}\right)=\:\mathrm{12}\right] \\ $$$$\left(\mathrm{13}×\mathrm{155}+\mathrm{8}\right)^{\left(\mathrm{12}×\mathrm{168}+\mathrm{7}\right)} \:=\:\mathrm{x}\left(\mathrm{mod13}\right) \\ $$$$\left(\mathrm{8}\right)^{\left(\mathrm{7}\right)} \:=\:\mathrm{x}\left(\mathrm{mod13}\right) \\ $$$$\left(\mathrm{8}^{\mathrm{2}} \right)^{\mathrm{3}} ×\mathrm{8}^{\mathrm{1}} \:=\:\mathrm{x}\left(\mathrm{mod13}\right) \\ $$$$\left(\mathrm{64}\right)^{\mathrm{3}} ×\mathrm{8}^{\mathrm{1}} \:=\:\mathrm{x}\left(\mathrm{mod13}\right) \\ $$$$\left(−\mathrm{1}\right)^{\mathrm{3}} ×\mathrm{8}^{\mathrm{1}} \:=\:\mathrm{x}\left(\mathrm{mod13}\right) \\ $$$$−\mathrm{8}\:=\:\mathrm{x}\left(\mathrm{mod13}\right) \\ $$$$\mathrm{1}×\mathrm{13}−\mathrm{8}\:=\:\mathrm{x}\left(\mathrm{mod13}\right) \\ $$$$\mathrm{5}\:=\:\mathrm{5}\left(\mathrm{mod13}\right) \\ $$$$\mathrm{x}\:=\:\mathrm{5} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com