Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 200795 by mathlove last updated on 23/Nov/23

lim_(x→sin1)  ((1−x^2 )/(1+cosx))=?

$$\underset{{x}\rightarrow{sin}\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{cosx}}=? \\ $$

Answered by witcher3 last updated on 23/Nov/23

x→((1−x^2 )/(1+cos(x))) is  defined in sin(1)

$$\mathrm{x}\rightarrow\frac{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{cos}\left(\mathrm{x}\right)}\:\mathrm{is}\:\:\mathrm{defined}\:\mathrm{in}\:\mathrm{sin}\left(\mathrm{1}\right) \\ $$$$ \\ $$

Commented by mathlove last updated on 23/Nov/23

is sin1≈0  ?

$${is}\:{sin}\mathrm{1}\approx\mathrm{0}\:\:? \\ $$

Commented by witcher3 last updated on 23/Nov/23

 (π/4)<1<(π/3)  (1/( (√2)))<sin(1)<((√3)/2)

$$\:\frac{\pi}{\mathrm{4}}<\mathrm{1}<\frac{\pi}{\mathrm{3}} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}<\mathrm{sin}\left(\mathrm{1}\right)<\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$

Commented by Frix last updated on 23/Nov/23

Even if sin 1° is a very small number it′s  still ≠0. We use exact values. x→sin 1° does  not mean x→0. Even x→(1/(10^(1000000) )) does not  mean x→0.

$$\mathrm{Even}\:\mathrm{if}\:\mathrm{sin}\:\mathrm{1}°\:\mathrm{is}\:\mathrm{a}\:\mathrm{very}\:\mathrm{small}\:\mathrm{number}\:\mathrm{it}'\mathrm{s} \\ $$$$\mathrm{still}\:\neq\mathrm{0}.\:\mathrm{We}\:\mathrm{use}\:\mathrm{exact}\:\mathrm{values}.\:{x}\rightarrow\mathrm{sin}\:\mathrm{1}°\:\mathrm{does} \\ $$$$\mathrm{not}\:\mathrm{mean}\:{x}\rightarrow\mathrm{0}.\:\mathrm{Even}\:{x}\rightarrow\frac{\mathrm{1}}{\mathrm{10}^{\mathrm{1000000}} }\:\mathrm{does}\:\mathrm{not} \\ $$$$\mathrm{mean}\:{x}\rightarrow\mathrm{0}. \\ $$

Commented by Frix last updated on 23/Nov/23

Even with x→0 we get ((1−0^2 )/(1+cos 0))=(1/2). No use  to calculate a limit.

$$\mathrm{Even}\:\mathrm{with}\:{x}\rightarrow\mathrm{0}\:\mathrm{we}\:\mathrm{get}\:\frac{\mathrm{1}−\mathrm{0}^{\mathrm{2}} }{\mathrm{1}+\mathrm{cos}\:\mathrm{0}}=\frac{\mathrm{1}}{\mathrm{2}}.\:\mathrm{No}\:\mathrm{use} \\ $$$$\mathrm{to}\:\mathrm{calculate}\:\mathrm{a}\:\mathrm{limit}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com