Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 143706 by Huy last updated on 17/Jun/21

2^x +9^y =x^2 +9xy+y^2   Find x,y∈N

$$\mathrm{2}^{\mathrm{x}} +\mathrm{9}^{\mathrm{y}} =\mathrm{x}^{\mathrm{2}} +\mathrm{9xy}+\mathrm{y}^{\mathrm{2}} \\ $$$$\mathrm{Find}\:\mathrm{x},\mathrm{y}\in\mathbb{N} \\ $$

Answered by TheHoneyCat last updated on 17/Jun/21

  for x=10 we get:  1024+9^y =^? 100+90y+y^2   checking in y=10 and studing the derivative  one gets:    ∀y≥10, 1024+9^y >100+90y+y^2   looking at how the values evolve for x (the derivative for x)  we get also that ∀x,y≥10 2^x +9^y >x^2 +9xy+y^2     Checking, with a computer, for all the values (x,y)∈[∣0,10∣]^2   I found that there are only two possibilites:  (x,y)∈{(1,1);(3,0)}      by the way, it is surely possible to get a better maximum value than ′′10′′  so that the verification can be done by hand  I was just too lazy to do it efficiently

$$ \\ $$$$\mathrm{for}\:{x}=\mathrm{10}\:\mathrm{we}\:\mathrm{get}: \\ $$$$\mathrm{1024}+\mathrm{9}^{{y}} \overset{?} {=}\mathrm{100}+\mathrm{90}{y}+{y}^{\mathrm{2}} \\ $$$$\mathrm{checking}\:\mathrm{in}\:{y}=\mathrm{10}\:\mathrm{and}\:\mathrm{studing}\:\mathrm{the}\:\mathrm{derivative} \\ $$$$\mathrm{one}\:\mathrm{gets}: \\ $$$$ \\ $$$$\forall{y}\geqslant\mathrm{10},\:\mathrm{1024}+\mathrm{9}^{{y}} >\mathrm{100}+\mathrm{90}{y}+{y}^{\mathrm{2}} \\ $$$$\mathrm{looking}\:\mathrm{at}\:\mathrm{how}\:\mathrm{the}\:\mathrm{values}\:\mathrm{evolve}\:\mathrm{for}\:{x}\:\left({the}\:{derivative}\:{for}\:{x}\right) \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{also}\:\mathrm{that}\:\forall{x},{y}\geqslant\mathrm{10}\:\mathrm{2}^{{x}} +\mathrm{9}^{{y}} >{x}^{\mathrm{2}} +\mathrm{9}{xy}+{y}^{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Checking},\:\mathrm{with}\:\mathrm{a}\:\mathrm{computer},\:\mathrm{for}\:\mathrm{all}\:\mathrm{the}\:\mathrm{values}\:\left({x},{y}\right)\in\left[\mid\mathrm{0},\mathrm{10}\mid\right]^{\mathrm{2}} \\ $$$$\mathrm{I}\:\mathrm{found}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\:\mathrm{only}\:\mathrm{two}\:\mathrm{possibilites}: \\ $$$$\left({x},{y}\right)\in\left\{\left(\mathrm{1},\mathrm{1}\right);\left(\mathrm{3},\mathrm{0}\right)\right\} \\ $$$$ \\ $$$$ \\ $$$${by}\:{the}\:{way},\:{it}\:{is}\:{surely}\:{possible}\:{to}\:{get}\:{a}\:{better}\:{maximum}\:{value}\:{than}\:''\mathrm{10}'' \\ $$$${so}\:{that}\:{the}\:{verification}\:{can}\:{be}\:{done}\:{by}\:{hand} \\ $$$${I}\:{was}\:{just}\:{too}\:{lazy}\:{to}\:{do}\:{it}\:{efficiently} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com