Question Number 197171 by MM42 last updated on 09/Sep/23 | ||
![]() | ||
$$\mathrm{2}^{{log}_{\mathrm{3}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)} +\mathrm{2}×\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{log}_{\mathrm{3}} \mathrm{2}} \:=\mathrm{12} \\ $$$$\Rightarrow{x}=? \\ $$$$ \\ $$ | ||
Answered by Frix last updated on 09/Sep/23 | ||
![]() | ||
$${a}^{\mathrm{log}_{\:{b}} \:{c}} ={c}^{\mathrm{log}_{{b}} \:{a}} \\ $$$$\mathrm{Which}\:\mathrm{is}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{prove}: \\ $$$$\mathrm{ln}\:\left({a}^{\mathrm{log}_{{b}} \:{c}} \right)=\mathrm{log}_{{b}} \:{c}\:\mathrm{ln}\:{a}\:=\frac{\mathrm{ln}\:{a}\:\mathrm{ln}\:{c}}{\mathrm{ln}\:{b}}= \\ $$$$=\mathrm{log}_{{b}} \:{a}\:\mathrm{ln}\:{c}\:=\mathrm{ln}\:\left({c}^{\mathrm{log}_{{b}} \:{a}} \right) \\ $$$$\mathrm{Here}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{2}^{\mathrm{log}_{\mathrm{3}} \:\left({x}^{\mathrm{2}} +\mathrm{1}\right)} =\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{ln}\:\mathrm{3}}} \\ $$$$\mathrm{The}\:\mathrm{equation}\:\mathrm{now}\:\mathrm{is} \\ $$$$\mathrm{3}\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{ln}\:\mathrm{3}}} =\mathrm{12} \\ $$$$\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{ln}\:\mathrm{3}}} =\mathrm{4} \\ $$$${x}^{\mathrm{2}} +\mathrm{1}=\mathrm{4}^{\frac{\mathrm{ln}\:\mathrm{3}}{\mathrm{ln}\:\mathrm{2}}} =\mathrm{9} \\ $$$${x}^{\mathrm{2}} =\mathrm{8} \\ $$$${x}=\pm\mathrm{2}\sqrt{\mathrm{2}} \\ $$ | ||
Commented by MM42 last updated on 10/Sep/23 | ||
![]() | ||
$${very}\:\:{good}\:.\:\:\:\cancel{\lesseqgtr} \\ $$ | ||
Commented by Frix last updated on 10/Sep/23 | ||