Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 129785 by bramlexs22 last updated on 19/Jan/21

 ((2+(√5)))^(1/3)  + ((2−(√5)))^(1/3)  =?   ((9^x −5.12^x + 4^(2x+1) )/(log _2 (6x^2 −11x+4))) ≤ 0

$$\:\sqrt[{\mathrm{3}}]{\mathrm{2}+\sqrt{\mathrm{5}}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{2}−\sqrt{\mathrm{5}}}\:=? \\ $$$$\:\frac{\mathrm{9}^{\mathrm{x}} −\mathrm{5}.\mathrm{12}^{\mathrm{x}} +\:\mathrm{4}^{\mathrm{2x}+\mathrm{1}} }{\mathrm{log}\:_{\mathrm{2}} \left(\mathrm{6x}^{\mathrm{2}} −\mathrm{11x}+\mathrm{4}\right)}\:\leqslant\:\mathrm{0}\: \\ $$

Answered by EDWIN88 last updated on 19/Jan/21

(1) ( ((2+(√5)))^(1/3)  +((2−(√5)))^(1/3)  )^3  = t^3        4 + 3((4−5))^(1/3)  ( ((2+(√5)))^(1/3)  + ((2−(√5)))^(1/3)  )= t^3        4 −3t = t^3  ; t^3 +3t−4=0      (t−1)(t^2 +t+4)=0 → { ((t=1)),((t^2 +t+4=0 →Δ<0)) :}       t=1=((2+(√5)))^(1/3)  + ((2−(√5)))^(1/3)

$$\left(\mathrm{1}\right)\:\left(\:\sqrt[{\mathrm{3}}]{\mathrm{2}+\sqrt{\mathrm{5}}}\:+\sqrt[{\mathrm{3}}]{\mathrm{2}−\sqrt{\mathrm{5}}}\:\right)^{\mathrm{3}} \:=\:\mathrm{t}^{\mathrm{3}} \\ $$$$\:\:\:\:\:\mathrm{4}\:+\:\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{4}−\mathrm{5}}\:\left(\:\sqrt[{\mathrm{3}}]{\mathrm{2}+\sqrt{\mathrm{5}}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{2}−\sqrt{\mathrm{5}}}\:\right)=\:\mathrm{t}^{\mathrm{3}} \\ $$$$\:\:\:\:\:\mathrm{4}\:−\mathrm{3t}\:=\:\mathrm{t}^{\mathrm{3}} \:;\:\mathrm{t}^{\mathrm{3}} +\mathrm{3t}−\mathrm{4}=\mathrm{0} \\ $$$$\:\:\:\:\left(\mathrm{t}−\mathrm{1}\right)\left(\mathrm{t}^{\mathrm{2}} +\mathrm{t}+\mathrm{4}\right)=\mathrm{0}\:\rightarrow\begin{cases}{\mathrm{t}=\mathrm{1}}\\{\mathrm{t}^{\mathrm{2}} +\mathrm{t}+\mathrm{4}=\mathrm{0}\:\rightarrow\Delta<\mathrm{0}}\end{cases} \\ $$$$\:\:\:\:\:\mathrm{t}=\mathrm{1}=\sqrt[{\mathrm{3}}]{\mathrm{2}+\sqrt{\mathrm{5}}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{2}−\sqrt{\mathrm{5}}}\: \\ $$$$\:\:\:\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com