Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 164929 by mathlove last updated on 23/Jan/22

∫_(−2) ^2 [x]dx=?

$$\underset{−\mathrm{2}} {\overset{\mathrm{2}} {\int}}\left[{x}\right]{dx}=? \\ $$

Answered by TheSupreme last updated on 23/Jan/22

∫_a ^b ⌊x⌋dx=∫_a ^(⌊a⌋) ⌊x⌋dx+∫_(⌊a⌋) ^(⌊b⌋) ⌊x⌋dx+∫_(⌊b⌋) ^b ⌊x⌋dx=  =⌊a⌋(⌊a⌋−a)+∫_(⌊a⌋) ^(⌊b⌋) ⌊x⌋dx+⌊b⌋(b−⌊b⌋)  =−{a}⌊a⌋+∫...+⌊b⌋{b}  ∫_(⌊a⌋) ^(⌊b⌋) ⌊x⌋=Σ_(i=⌊a⌋) ^(⌊b⌋−1) i=((⌊b−1⌋⌊b⌋)/2)−((⌊a⌋⌊a+1⌋)/2)  ∫_(⌊a⌋) ^(⌊b⌋) ⌊x⌋dx=⌊b⌋{b}+((b(b−1))/2)−⌊a⌋{a}−((⌊a⌋(⌊a⌋+1))/2)  ∫_(−2) ^2 ⌊x⌋dx=0+1−0−3=−2    you can see the integral as the sum of three parts.  I) from a to ⌊a⌋ (negative area region)   II) from ⌊a⌋ to ⌊b⌋  III) from ⌊b⌋ to b    I and III are two rectangles of base: a−⌊a⌋ and b−⌊b⌋ and height: ⌊a⌋ and ⌊b⌋    II ⌊x⌋ is a step function.  each step is  rectangle that has base=1 and eight=i  where i goes from ⌊a⌋ to ⌊b⌋  the last step ⌊b⌋−1<x<⌊b⌋ is tall ⌊b⌋−1 so we can conclude  ∫_(⌊a⌋) ^(⌊b⌋) ⌊x⌋=Σ_(i=⌊a⌋) ^(⌊b⌋−1) i=((⌊b⌋⌊b−1⌋)/2)−((⌊a⌋⌊a+1⌋)/2)

$$\int_{{a}} ^{{b}} \lfloor{x}\rfloor{dx}=\int_{{a}} ^{\lfloor{a}\rfloor} \lfloor{x}\rfloor{dx}+\int_{\lfloor{a}\rfloor} ^{\lfloor{b}\rfloor} \lfloor{x}\rfloor{dx}+\int_{\lfloor{b}\rfloor} ^{{b}} \lfloor{x}\rfloor{dx}= \\ $$$$=\lfloor{a}\rfloor\left(\lfloor{a}\rfloor−{a}\right)+\int_{\lfloor{a}\rfloor} ^{\lfloor{b}\rfloor} \lfloor{x}\rfloor{dx}+\lfloor{b}\rfloor\left({b}−\lfloor{b}\rfloor\right) \\ $$$$=−\left\{{a}\right\}\lfloor{a}\rfloor+\int...+\lfloor{b}\rfloor\left\{{b}\right\} \\ $$$$\int_{\lfloor{a}\rfloor} ^{\lfloor{b}\rfloor} \lfloor{x}\rfloor=\underset{{i}=\lfloor{a}\rfloor} {\overset{\lfloor{b}\rfloor−\mathrm{1}} {\sum}}{i}=\frac{\lfloor{b}−\mathrm{1}\rfloor\lfloor{b}\rfloor}{\mathrm{2}}−\frac{\lfloor{a}\rfloor\lfloor{a}+\mathrm{1}\rfloor}{\mathrm{2}} \\ $$$$\int_{\lfloor{a}\rfloor} ^{\lfloor{b}\rfloor} \lfloor{x}\rfloor{dx}=\lfloor{b}\rfloor\left\{{b}\right\}+\frac{{b}\left({b}−\mathrm{1}\right)}{\mathrm{2}}−\lfloor{a}\rfloor\left\{{a}\right\}−\frac{\lfloor{a}\rfloor\left(\lfloor{a}\rfloor+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\int_{−\mathrm{2}} ^{\mathrm{2}} \lfloor{x}\rfloor{dx}=\mathrm{0}+\mathrm{1}−\mathrm{0}−\mathrm{3}=−\mathrm{2} \\ $$$$ \\ $$$${you}\:{can}\:{see}\:{the}\:{integral}\:{as}\:{the}\:{sum}\:{of}\:{three}\:{parts}. \\ $$$$\left.{I}\right)\:{from}\:{a}\:{to}\:\lfloor{a}\rfloor\:\left({negative}\:{area}\:{region}\right)\: \\ $$$$\left.{II}\right)\:{from}\:\lfloor{a}\rfloor\:{to}\:\lfloor{b}\rfloor \\ $$$$\left.{III}\right)\:{from}\:\lfloor{b}\rfloor\:{to}\:{b} \\ $$$$ \\ $$$${I}\:{and}\:{III}\:{are}\:{two}\:{rectangles}\:{of}\:{base}:\:{a}−\lfloor{a}\rfloor\:{and}\:{b}−\lfloor{b}\rfloor\:{and}\:{height}:\:\lfloor{a}\rfloor\:{and}\:\lfloor{b}\rfloor \\ $$$$ \\ $$$${II}\:\lfloor{x}\rfloor\:{is}\:{a}\:{step}\:{function}. \\ $$$${each}\:{step}\:{is}\:\:{rectangle}\:{that}\:{has}\:{base}=\mathrm{1}\:{and}\:{eight}={i} \\ $$$${where}\:{i}\:{goes}\:{from}\:\lfloor{a}\rfloor\:{to}\:\lfloor{b}\rfloor \\ $$$${the}\:{last}\:{step}\:\lfloor{b}\rfloor−\mathrm{1}<{x}<\lfloor{b}\rfloor\:{is}\:{tall}\:\lfloor{b}\rfloor−\mathrm{1}\:{so}\:{we}\:{can}\:{conclude} \\ $$$$\int_{\lfloor{a}\rfloor} ^{\lfloor{b}\rfloor} \lfloor{x}\rfloor=\underset{{i}=\lfloor{a}\rfloor} {\overset{\lfloor{b}\rfloor−\mathrm{1}} {\sum}}{i}=\frac{\lfloor{b}\rfloor\lfloor{b}−\mathrm{1}\rfloor}{\mathrm{2}}−\frac{\lfloor{a}\rfloor\lfloor{a}+\mathrm{1}\rfloor}{\mathrm{2}} \\ $$

Commented by mathlove last updated on 23/Jan/22

thanks   sir

$${thanks}\:\:\:{sir} \\ $$

Answered by Ar Brandon last updated on 23/Jan/22

I=∫_(−2) ^2 [x]dx=Σ_(k=−2) ^1 ∫_k ^(k+1) kdx=Σ_(k=−2) ^1 k     =−2−1+0+1=−2

$${I}=\int_{−\mathrm{2}} ^{\mathrm{2}} \left[{x}\right]{dx}=\underset{{k}=−\mathrm{2}} {\overset{\mathrm{1}} {\sum}}\int_{{k}} ^{{k}+\mathrm{1}} {kdx}=\underset{{k}=−\mathrm{2}} {\overset{\mathrm{1}} {\sum}}{k} \\ $$$$\:\:\:=−\mathrm{2}−\mathrm{1}+\mathrm{0}+\mathrm{1}=−\mathrm{2} \\ $$

Commented by mathlove last updated on 23/Jan/22

thanks

$${thanks} \\ $$

Answered by TheSupreme last updated on 23/Jan/22

∫_0 ^x {t}dt=((⌊x⌋+{x}^2 )/2)  ∫_0 ^x t−{t}=(x^2 /2)−(([x]+{x}^2 )/2)=  =((x^2 −{x}^2 −[x])/2)=(([x](x+{x})−[x])/2)=  =[x]((x+{x}−1)/2)  =2+0−1−2−1=−2    if {x}=0  ⌊x⌋((x−1)/2)

$$\int_{\mathrm{0}} ^{{x}} \left\{{t}\right\}{dt}=\frac{\lfloor{x}\rfloor+\left\{{x}\right\}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{{x}} {t}−\left\{{t}\right\}=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−\frac{\left[{x}\right]+\left\{{x}\right\}^{\mathrm{2}} }{\mathrm{2}}= \\ $$$$=\frac{{x}^{\mathrm{2}} −\left\{{x}\right\}^{\mathrm{2}} −\left[{x}\right]}{\mathrm{2}}=\frac{\left[{x}\right]\left({x}+\left\{{x}\right\}\right)−\left[{x}\right]}{\mathrm{2}}= \\ $$$$=\left[{x}\right]\frac{{x}+\left\{{x}\right\}−\mathrm{1}}{\mathrm{2}} \\ $$$$=\mathrm{2}+\mathrm{0}−\mathrm{1}−\mathrm{2}−\mathrm{1}=−\mathrm{2} \\ $$$$ \\ $$$${if}\:\left\{{x}\right\}=\mathrm{0} \\ $$$$\lfloor{x}\rfloor\frac{{x}−\mathrm{1}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com