Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 6843 by Tawakalitu. last updated on 30/Jul/16

2^(10)  + 3^(20)  + 4^(30)  + 5^(40)  + 6^(50)   (mod 7) = ?

$$\mathrm{2}^{\mathrm{10}} \:+\:\mathrm{3}^{\mathrm{20}} \:+\:\mathrm{4}^{\mathrm{30}} \:+\:\mathrm{5}^{\mathrm{40}} \:+\:\mathrm{6}^{\mathrm{50}} \:\:\left({mod}\:\mathrm{7}\right)\:=\:? \\ $$

Commented by prakash jain last updated on 31/Jul/16

2^3  ≡ 1 (mod 7)⇒2^(10) =2^3 ×2^3 ×2^3 ×2≡2 (mod 7)  3^2 =9≡2 (mod 7)⇒3^(20) ≡2^(10) ≡2 (mod 7)  4^(30) =(2^(10) )^6 ≡2^6 ≡1 (mod 7)  5^2 ≡4 (mod 7)⇒5^(40) ≡4^(20) ≡(2^(10) )^4 ≡2^4 ≡2 (mod 7)  6≡−1 (mod 7)⇒6^(50) ≡(−1)^(50) ≡1 (mod 7)  2^(10)  + 3^(20)  + 4^(30)  + 5^(40)  + 6^(50)   (mod 7) =   2+2+1+2+1≡8≡1 (mod 7)

$$\mathrm{2}^{\mathrm{3}} \:\equiv\:\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{7}\right)\Rightarrow\mathrm{2}^{\mathrm{10}} =\mathrm{2}^{\mathrm{3}} ×\mathrm{2}^{\mathrm{3}} ×\mathrm{2}^{\mathrm{3}} ×\mathrm{2}\equiv\mathrm{2}\:\left(\mathrm{mod}\:\mathrm{7}\right) \\ $$$$\mathrm{3}^{\mathrm{2}} =\mathrm{9}\equiv\mathrm{2}\:\left(\mathrm{mod}\:\mathrm{7}\right)\Rightarrow\mathrm{3}^{\mathrm{20}} \equiv\mathrm{2}^{\mathrm{10}} \equiv\mathrm{2}\:\left(\mathrm{mod}\:\mathrm{7}\right) \\ $$$$\mathrm{4}^{\mathrm{30}} =\left(\mathrm{2}^{\mathrm{10}} \right)^{\mathrm{6}} \equiv\mathrm{2}^{\mathrm{6}} \equiv\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{7}\right) \\ $$$$\mathrm{5}^{\mathrm{2}} \equiv\mathrm{4}\:\left(\mathrm{mod}\:\mathrm{7}\right)\Rightarrow\mathrm{5}^{\mathrm{40}} \equiv\mathrm{4}^{\mathrm{20}} \equiv\left(\mathrm{2}^{\mathrm{10}} \right)^{\mathrm{4}} \equiv\mathrm{2}^{\mathrm{4}} \equiv\mathrm{2}\:\left(\mathrm{mod}\:\mathrm{7}\right) \\ $$$$\mathrm{6}\equiv−\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{7}\right)\Rightarrow\mathrm{6}^{\mathrm{50}} \equiv\left(−\mathrm{1}\right)^{\mathrm{50}} \equiv\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{7}\right) \\ $$$$\mathrm{2}^{\mathrm{10}} \:+\:\mathrm{3}^{\mathrm{20}} \:+\:\mathrm{4}^{\mathrm{30}} \:+\:\mathrm{5}^{\mathrm{40}} \:+\:\mathrm{6}^{\mathrm{50}} \:\:\left({mod}\:\mathrm{7}\right)\:=\: \\ $$$$\mathrm{2}+\mathrm{2}+\mathrm{1}+\mathrm{2}+\mathrm{1}\equiv\mathrm{8}\equiv\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{7}\right) \\ $$

Commented by Tawakalitu. last updated on 31/Jul/16

Thanks so much

$${Thanks}\:{so}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com