Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 138716 by floor(10²Eta[1]) last updated on 17/Apr/21

∫_2 ^∞ (1/(x^2 lnx))dx   converges or diverges?

21x2lnxdxconvergesordiverges?

Answered by mathmax by abdo last updated on 17/Apr/21

I=∫_2 ^∞  (dx/(x^2 lnx))? ⇒I=_(lnx=t)   ∫_(ln2) ^∞    ((e^t dt)/(e^(2t) t)) =∫_(ln2) ^(+∞)  (e^(−t) /t)dt  lim_(t→+∞) t^2  .(e^(−t) /t)=lim_(t→+∞) te^(−t)  =0 ⇒I is convergent

I=2dxx2lnx?I=lnx=tln2etdte2tt=ln2+ettdtlimt+t2.ett=limt+tet=0Iisconvergent

Terms of Service

Privacy Policy

Contact: info@tinkutara.com