Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 101601 by Dwaipayan Shikari last updated on 03/Jul/20

∫_((√2)−1) ^((√2)+1) ((x^4 +x^2 +1)/((x^2 +1)^2 ))dx

$$\int_{\sqrt{\mathrm{2}}−\mathrm{1}} ^{\sqrt{\mathrm{2}}+\mathrm{1}} \frac{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$

Answered by bemath last updated on 03/Jul/20

∫ (((x^2 +1)^2 −x^2 )/((x^2 +1)^2 )) dx = x−∫ (x^2 /((x^2 +1)^2 )) dx  I_2 = ∫ (x^2 /((x^2 +1)^2 )) dx   [ x = tan p ]   I_2  = ∫ ((tan^2 p . sec^2 p dp)/(sec^4 p))  = ∫ tan^2 p cos^2 p dp   = ∫ ((1/2)−(1/2)cos 2p) dp  = (1/2)p −(1/4)sin 2p =(1/2)tan^(−1) (x)−(x/(2(x^2 +1)))  I= 2−(1/2)(tan^(−1) ((√2)+1)−tan^(−1) ((√2)−1))  −(1/2)((((√2)+1)/(4+2(√2))) −(((√2)−1)/(4−2(√2))))

$$\int\:\frac{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} }{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{dx}\:=\:\mathrm{x}−\int\:\frac{\mathrm{x}^{\mathrm{2}} }{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{dx} \\ $$$$\mathrm{I}_{\mathrm{2}} =\:\int\:\frac{{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\:{dx}\: \\ $$$$\left[\:{x}\:=\:\mathrm{tan}\:{p}\:\right]\: \\ $$$$\mathrm{I}_{\mathrm{2}} \:=\:\int\:\frac{\mathrm{tan}\:^{\mathrm{2}} {p}\:.\:\mathrm{sec}\:^{\mathrm{2}} {p}\:{dp}}{\mathrm{sec}\:^{\mathrm{4}} {p}} \\ $$$$=\:\int\:\mathrm{tan}\:^{\mathrm{2}} {p}\:\mathrm{cos}\:^{\mathrm{2}} {p}\:{dp}\: \\ $$$$=\:\int\:\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{2}{p}\right)\:{dp} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}{p}\:−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\:\mathrm{2}{p}\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left({x}\right)−\frac{{x}}{\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$${I}=\:\mathrm{2}−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}+\mathrm{1}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\right) \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\mathrm{4}+\mathrm{2}\sqrt{\mathrm{2}}}\:−\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{4}−\mathrm{2}\sqrt{\mathrm{2}}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com