Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 199899 by sonukgindia last updated on 11/Nov/23

Answered by Rajpurohith last updated on 11/Nov/23

cos(z)+sin(z)=k   ⇒(((e^(iz) +e^(−iz) )/2))+(((e^(iz) −e^(−iz) )/(2i)))=k  ⇒e^(iz) +e^(−iz) +i(e^(−iz) −e^(iz) )=2k  ⇒e^(iz) (1−i)+e^(−iz) (1+i)=2k....(1)  we know 1+i=(2/(1−i))  put t=e^(iz) (1−i) ⇒t^(−1) =e^(−iz)  (((1+i)/2))  ⇒(1) reduces to    t+2t^(−1) =2k  ⇒t^2 −2kt+2=0  ⇒(t−k)^2 −k^2 +2=0  ⇒t=k±(√(k^2 −2 )) ⇒e^(iz) (1−i)=k±(√(k^2 −2))  ⇒e^(iz) =((k±(√(k^2 −2)))/(1−i))  ∴z=−ilog(((k±(√(k^2 −2)))/(1−i)))

$${cos}\left({z}\right)+{sin}\left({z}\right)={k}\: \\ $$$$\Rightarrow\left(\frac{{e}^{{iz}} +{e}^{−{iz}} }{\mathrm{2}}\right)+\left(\frac{{e}^{{iz}} −{e}^{−{iz}} }{\mathrm{2}{i}}\right)={k} \\ $$$$\Rightarrow{e}^{{iz}} +{e}^{−{iz}} +{i}\left({e}^{−{iz}} −{e}^{{iz}} \right)=\mathrm{2}{k} \\ $$$$\Rightarrow{e}^{{iz}} \left(\mathrm{1}−{i}\right)+{e}^{−{iz}} \left(\mathrm{1}+{i}\right)=\mathrm{2}{k}....\left(\mathrm{1}\right) \\ $$$${we}\:{know}\:\mathrm{1}+{i}=\frac{\mathrm{2}}{\mathrm{1}−{i}} \\ $$$${put}\:{t}={e}^{{iz}} \left(\mathrm{1}−{i}\right)\:\Rightarrow{t}^{−\mathrm{1}} ={e}^{−{iz}} \:\left(\frac{\mathrm{1}+{i}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\left(\mathrm{1}\right)\:{reduces}\:{to}\:\:\:\:{t}+\mathrm{2}{t}^{−\mathrm{1}} =\mathrm{2}{k} \\ $$$$\Rightarrow{t}^{\mathrm{2}} −\mathrm{2}{kt}+\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow\left({t}−{k}\right)^{\mathrm{2}} −{k}^{\mathrm{2}} +\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow{t}={k}\pm\sqrt{{k}^{\mathrm{2}} −\mathrm{2}\:}\:\Rightarrow{e}^{{iz}} \left(\mathrm{1}−{i}\right)={k}\pm\sqrt{{k}^{\mathrm{2}} −\mathrm{2}} \\ $$$$\Rightarrow{e}^{{iz}} =\frac{{k}\pm\sqrt{{k}^{\mathrm{2}} −\mathrm{2}}}{\mathrm{1}−{i}} \\ $$$$\therefore{z}=−{ilog}\left(\frac{{k}\pm\sqrt{{k}^{\mathrm{2}} −\mathrm{2}}}{\mathrm{1}−{i}}\right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com