Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 199840 by Calculusboy last updated on 10/Nov/23

Answered by deleteduser1 last updated on 10/Nov/23

Let ((y+(√(1+y^2 )))/y)=1+(√((1/y^2 )+1))=x  ⇒x^2 −2x=(1/y^2 )⇒y=(√(1/(x^2 −2x)))  ⇒f(x)=(1/(x^2 −2x))⇒x∈R\(0,2)  [f(x)=(1/(x^2 −2x))>0⇒x^2 −2x>0⇒(x−1)^2 >1⇒R\(0,2)]

$${Let}\:\frac{{y}+\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }}{{y}}=\mathrm{1}+\sqrt{\frac{\mathrm{1}}{{y}^{\mathrm{2}} }+\mathrm{1}}={x} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −\mathrm{2}{x}=\frac{\mathrm{1}}{{y}^{\mathrm{2}} }\Rightarrow{y}=\sqrt{\frac{\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{2}{x}}} \\ $$$$\Rightarrow{f}\left({x}\right)=\frac{\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{2}{x}}\Rightarrow{x}\in\mathbb{R}\backslash\left(\mathrm{0},\mathrm{2}\right) \\ $$$$\left[{f}\left({x}\right)=\frac{\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{2}{x}}>\mathrm{0}\Rightarrow{x}^{\mathrm{2}} −\mathrm{2}{x}>\mathrm{0}\Rightarrow\left({x}−\mathrm{1}\right)^{\mathrm{2}} >\mathrm{1}\Rightarrow{R}\backslash\left(\mathrm{0},\mathrm{2}\right)\right] \\ $$

Commented by Calculusboy last updated on 10/Nov/23

thanks sir

$$\boldsymbol{{thanks}}\:\boldsymbol{{sir}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com